
BGD
6, 11187–11293, 2009

Mediterranean
plankton

I. Siokou-Frangou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Biogeosciences Discuss., 6, 11187–11293, 2009
www.biogeosciences-discuss.net/6/11187/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Biogeosciences
Discussions

This discussion paper is/has been under review for the journal Biogeosciences (BG).
Please refer to the corresponding final paper in BG if available.

Plankton in the open Mediterranean Sea:
a review
I. Siokou-Frangou1, U. Christaki2,3,4, M. G. Mazzocchi5, M. Montresor5, M. Ribera
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Abstract

We present an overview of the plankton studies conducted during the last 25 years
in the epipelagic offshore waters of the Mediterranean Sea. This quasi-enclosed
sea is characterized by a rich and complex physical dynamics that includes unique
thermohaline features, particular multilayer circulation, topographic gyres, and meso-5

and sub-mesoscale activity. Recent investigations have basically confirmed the
long-recognised oligotrophic character of this sea, which enhances along both the
west-east, and the north-south directions. Nutrient availability is low, especially for
phosphorous (N:P up to 60), although limitation may be relaxed by inputs from highly
populated coasts and from the atmosphere. Phytoplankton biomass as chl-a, generally10

displays low values (less than 0.2 µgchl−al−1) over large areas, with a modest late
winter increase. A large bloom (up to 3 µgl−1) throughout the late winter and early
spring is only observed in the NW area. Relatively high biomass peaks are also
recorded in fronts and cyclonic gyres. A deep chlorophyll maximum is a permanent
feature for the whole basin (except during the late winter mixing). It progressively15

deepens from the Alboran Sea (30 m) to the easternmost Levantine basin (120 m).
Primary production reveals a similar west-east decreasing trend and ranges from 59
to 150 gCm−2y−1 (in situ measurements). Overall the basin is largely dominated by
small-sized autotrophs, microheterotrophs and egg-carrying copepod species. The
phytoplankton, the microbial (both autotrophic and heterotrophic) and the zooplankton20

components reveal a considerable diversity and variability over spatial and temporal
scales, the latter less explored though. Examples are the wide diversity of dinoflagel-
lates and coccolithophores, the multifarious role of diatoms or picoeukaryotes, and the
distinct seasonal or spatial patterns of the species-reach copepod genera or families
which dominate in the basin. Major dissimilarities between western and eastern basins25

have been highlighted in species composition of phytoplankton and mesozooplankton,
but also in the microbial components and in their relationships. Superimposed to
these longitudinal differences, a pronounced biological heterogeneity is also observed
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in areas hosting deep convection, fronts, cyclonic and anti-cyclonic gyres or eddies.
There, the intermittent nutrient enrichment promotes switches from a small-sized
microbial community to diatom-dominated populations. A classical food web is ready
to substitute the microbial food web in these cases. These switches, likely occurring
within a continuum of trophic pathways, may greatly enhance the flux towards high5

trophic levels, in spite of an apparent heterotrophy. Basically, the system seems to be
top-down controlled and characterised by a multivorous web, as shown by the great
variety of feeding modes and preferences and by the signifi cant and simultaneous
grazing impact on phytoplankton and ciliates by mesozooplankton.

10

“La Mediterrània, o almenys la seva zona pelàgica, seria comparable a una
Amazònia marina.” (Margalef, 1995)
(The Mediterranean, or at least its pelagic zone, would be like a marine version of the
Amazon forest.)

1 Introduction15

The Mediterranean Sea (MS) is the largest quasi-enclosed sea on the Earth, its exten-
sion being similar to that of the largest semi-enclosed (e.g., the Gulf of Mexico) and
open (e.g., the Caribbean Sea) marginal seas of the extant ocean (Meybeck et al.,
2007). The MS’ size, location, morphology, and external forcing allow for a rich and
complex physical dynamics that includes: i) unique thermohaline features ii) particular20

multilayer circulation iii) topographic gyres, and iv) meso- and sub-mesoscale activ-
ity. Nutrients and chlorophyll-a (chl-a) pools rank the basin as oligotrophic to ultra-
oligotrophic (Krom et al., 1991; Antoine et al., 1995). Oligotrophy seems to mainly due
to the very low concentration of inorganic phosphorus, which is assumed to limit pri-
mary production (Berland et al., 1980; Thingstad and Rassoulzadegan, 1995, 1999).25

Additional features of the MS are i) the decreasing west-east gradient in chl-a concen-
tration, as shown by color remote sensing (D’Ortenzio and Ribera d’Alcalá, 2009) as
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well as by in situ data (Marie et al., 2006, and references therein), and ii) a relatively
high number of bioprovinces (sensu Longhurst, 2006), with boundary definition mostly
based on the distribution of benthos and necton (Bianchi, 2007). The MS is also a site
of intense anthropic activity dating back to at least 5000 years BP, whose impact on the
marine environment have still to be clearly assessed and quantified. All these peculiar5

and contrasting characteristics should likely be reflected in the structure and dynam-
ics of plankton communities. Numerous investigations have been conducted on the
fluxes of the main elements, as linked to the biological pump. Studies on structure and
dynamics of plankton communities in the open MS have increased in the last decades.

A first synthetic overview of the pelagic MS ecosystems was provided by the col-10

lective efforts reported in Margalef (1985) and Moraitou-Apostolopoulou and Kiortsis
(1985). Most of those contributions focused on bulk parameters (e.g., chl-a, primary
productivity, mesozooplankton biomass) and organismal distributions. In the following
years, the discovery of picoplankton (e.g., Waterbury et al., 1979) and the consequent
increased attention for the role of microheterotrophs within the pelagic food web pro-15

vided new angles for the understanding of oligotrophic seas such as the MS (Ras-
soulzadegan, 1977; Hagström et al., 1988). Numerous research efforts starting from
the nineties were hence devoted to constrain carbon and nutrient fluxes and to pro-
vide insight on the key players of the MS pelagic food web (e.g., Lipiatou et al., 1999;
Thingstad and Rassoulzadegan, 1999; Tselepides and Polychronaki, 2000; Monaco,20

2002; Mazzocchi et al., 2003; Krom et al., 2005). An increasing number of studies
have focused on relevant biological processes and/or vital rates (e.g. Calbet et al.,
1996; Estrada, 1996; Saiz et al., 1999; Moutin and Raimbault, 2002), while the hypoth-
esis of phosphorous limitation has inspired studies on the pelagic food web as affected
by phosphorus enrichment (Thingstad et al., 2005). Physical-biological coupling due25

to mesoscale dynamics has been addressed more frequently during the last decades
(e.g., Champalbert, 1996; Alcaraz et al., 2007). Clearly these studies have provided
new insights in the MS plankton in terms of its components, besides a more extended
geographic coverage.
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The present review aims at providing an updated and integrated picture of the
Mediterranean plankton in the offshore epipelagic waters (0–200 m) as it emerges from
studies conducted during the last 25 years. The key issues addressed in the review are:
i) the plankton components, from the virus, bacteria and picoautotrophs, up to meso-
zooplankton, with a prevalent focus on the key players, i.e., with a species-oriented5

approach; ii) their mutual interactions within the pelagic realm, with the aim of cor-
roborating or improving the existing descriptions of the planktonic food web structure
(Thingstad, 1998; Sommer et al., 2002) and depicting the principal carbon producers.
A review could be helpful, among others, for the assessment of global change impact
on MS ecosystems. In addition, as detailed in the following sections, the main forcings10

on the basin and their scales display peculiar features. As a consequence, non-trivial
responses might be triggered in plankton communities, which could be of significant
interest for a wider than Mediterranean community.

2 Physical and chemical framework

Physical dynamics is a crucial driver of the seasonal cycle of production in the pelagic15

environment (Mann and Lazier, 2006, and references therein). Here we use the term
of physical dynamics in a broad sense, which includes both marine and atmospheric
processes. The latter are particularly important in the MS because, besides ruling
the general circulation, they contribute to the fluxes of elements into the basin. As
compared to the open ocean or other internal seas, the inputs from land play a greater20

role in the MS, due to its higher coastal-length to basin-surface ratio and its connection
with one of the proportionally largest catchment areas (Meybeck et al., 2007).

The bathymetry (Fig. 1) highlights a key feature of the MS, i.e. the connection with
the neighbouring ocean and between the deep sub-basins through shallow or very
shallow straits (e.g., Gibraltar, Dardanelles, Sicily, etc.), which preclude exchange of25

deep water masses. Nonetheless, the deep layers are efficiently oxygenated in the
present MS, because deep waters are regularly formed independently in the western
and eastern sub-basins and renewal occurs at yearly pace (Hopkins, 1978).
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The present MS is a concentration basin (freshwater loss exceeds freshwater in-
puts), which forces an anti-estuarine circulation, with saltier and denser water exiting
the basin at Gibraltar and a compensating entrance of the fresher Atlantic water. As
the unbalance between evaporation and precipitation plus runoff (the E-P-R term) in-
creases towards east, the eastern basin is anti-estuarine respect to the western basin.5

This creates a single open thermohaline cell, encompassing the upper layer of both
basins, with a dominant west-to-east surface transport and a east-to-west intermediate
transport (e.g., Pinardi and Masetti, 2000). North-westerly wind stress prevails over
the whole basin in winter, with a rotation towards north-east, whereas east quadrants
in the western MS in summer enhance the W-to-E transport. The wind stress pattern,10

the morphology of the basin and the bottom topography produces a somewhat regu-
lar pattern in the distribution of eddies and gyres, which are mainly anticyclonic in the
southern regions and cyclonic in the northern ones (Pinardi and Masetti, 2000).

The Atlantic Water entering the basin is often referred to as Modified Atlantic Water
(MAW) to account for the progressive eastward change in its T-S properties. The MAW15

adds a haline component to the thermal contribution to stratification in large areas of
the SW MS decreasing the winter mixed layer depth (D’Ortenzio et al., 2005).

From a dynamical point of view, the entrance of MAW into the basin produces a sys-
tem of highly energetic anticyclonic structures in both the Alboran Sea and in the Al-
gerian basin, where the Algerian current generates anticyclonic eddies (Fig. 2) with20

lifetimes from several months up to three years (Puillat et al., 2002, and references
therein). One of the most striking features associated with the MAW is the North
Balearic Front in the NW MS, which separates two subregions with drastically different
regimes. Also associated with MAW is the jet across the Straits of Sicily, which is the
dominant connecting surface flow among the two MS sub-basins. In the Aegean Sea,25

at the north-eastern edge of the MS, the modified Black Sea Water flows in through
the Dardanelles Strait. A strong thermohaline front (the North Eastern Aegean Front)
is formed in the area where the less saline (∼30) and colder water meets the saltier
(∼38.5) and warmer water of Levantine origin (Zervakis and Georgopoulos, 2002).
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The general circulation of the MS is also characterized by the presence of perma-
nent or semi-permanent sub-basin gyres, which are mostly topographically controlled
(Robinson and Golnaraghi, 1994). The most relevant among them are the cyclonic
Rhodos Gyre (NW Levantine Sea) and the South Adriatic Gyre, with convective events
during winter leading to the formation of intermediate and deep water masses, respec-5

tively. Another quasi permanent gyre, which is mostly wind driven and displays strong
seasonality, is located in the North Tyrrhenian Sea (Artale et al., 1994), with a coupled
anti-cyclonic twin on its southern edge (Rinaldi et al., 2009). In the southern part of
the basin, in addition to the Algerian eddies, quasi permanent anticyclonic structures
populate the eastern MS, e.g., Ierapetra (south of Crete Island), Mersa Matruh (north10

of the Egyptian coast), Shikmona (south of Cyprus) and Cyprus Eddy (south-west of
Cyprus (Fig. 2). Local deep convection events occur periodically in the deep troughs
(>1000m) of the North Aegean Sea and in the deep basin of the South Aegean sea.
Finally, in the Gulf of Lion (NW MS), a large scale cyclonic circulation and the extreme
atmospheric forcing, especially in winter, force intense convective events, which even-15

tually reach the bottom. Based on an analysis of wind driven surface Ekman transport,
intermittent coastal upwelling events are also likely to take place in selected regions
of the MS, namely the Alboran, Balearic, Straits of Sicily, East Adriatic and North-East
Aegean Sea (Agostini and Bakun, 2002).

The two terms affecting the vertical flux of nutrients to the photic zone that allows20

new production are the depth of the mixing and the subsurface nutrient concentrations.
A synthetic view of the mixed layer depth in different seasons is reported in Fig. 3. Main
features are: i) the presence of few sites where maximum depth of mixing is greater
than 200 m. Sub-basin cyclonic gyres and the large cyclonic area of the NW MS are
likely the only sites where the doming of isopycnals may enhance vertical transport25

of nutrients due to winter convective events; ii) clear differences among regions in the
time when the mixed layer reaches the maximum depth; iii) a different duration of the
stratification season among different areas, with variable thickness of the layer, i.e., of
the location of the pycnocline.
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As for the second term, the inventory of surface and subsurface nutrients is repre-
sented in Fig. 4, where the average winter concentrations of nitrates at 10 and 100 m
depths are shown. The two maps include the effect of the processes represented in
Fig. 3, but also highlight the role played by the cyclonic structures sketched in Fig. 2.
In addition, Fig. 4 shows the very strong west-east gradient in the subsurface nutrient5

concentration. Nutrient concentrations in coastal upwelling areas are lower than those
found in other upwelling systems (Fig. 4), probably because the temporal scale of the
upwelling events is very short. Therefore in those areas it should not be expected to
observe a striking difference in biological production as compared with other active ar-
eas of the basin. By contrast, in situ observations and modeling studies suggest that10

mesoscale and submesoscale processes may affect biological activity in the MS, in
the proximity of: i) active frontal regions (North Balearic-Catalan, Almeria-Oran, North-
East Aegean Sea Fronts), ii) deep convection areas (Gulf of Lion, South Adriatic Gyre,
Rhodos Gyre), and/or iii) sites where coastal morphology and intense wind stress gen-
erate a strong input of potential vorticity leading to energetic filaments (Bignami et al.,15

2008). The latter process, previously detected only through Sea Surface Temperature
anomaly, is frequently observed also in high resolution remote sensing chl-a maps (Ier-
mano et al., 2009). Such a feature may contribute to disperse coastal inputs toward
the open sea, along with plankton. In fact, in addition to the mechanisms of vertical
transport, a significant role in the MS is played by external inputs from the coasts, al-20

though only three major rivers are present, namely the Po River in North Adriatic Sea,
the Rhone in the Gulf of Lion and the Nile in the South-East Levantine Sea, the lat-
ter with a dramatically decrease in transport over the last decades. More important
at times is the deposition of aerial dust, which however is difficult to quantify correctly
because atmospheric inputs are only monitored at a few sites located along the coasts.25

Despite the associated uncertainties, budget calculation (Ribera d’Alcalá et al., 2003;
Krom et al., 2004) and, more recently, isotopic data (Krom et al., 2004; Sandroni et al.,
2007; Schlarbaum et al., 2009) suggest that atmospheric inputs support a significant
amount of new production, especially in the E MS. In particular, phosphorus addition
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from atmosphere may account for up to 40% of primary production and nitrogen addi-
tion might fulfill the nitrogen requirement for all the export production, at least in the E
MS (Kouvarakis et al., 2001; Markaki et al., 2003).

Atmospheric inputs are certainly a crucial term in the functioning of the basin. A rel-
evant biogeochemical feature in the MS is the very high N/P ratio in its deep layers.5

Processes leading to this feature are still controversial, but the high N/P ratio of atmo-
spheric inputs indicates that they are among the contributing factors to the anomalous
ratio recorded in Mediterranean waters (Markaki et al., 2008, and references therein).

Markaki et al. (2008) reported also that between 30 and 40% of the N and P input to
the basin is in organic form highlighting the role of atmospheric inputs also as a source10

of organic matter. This adds to riverine inputs. Ludwig et al. (1996) estimated that
approximately 0.8×1012moly−1 of organic carbon may enter the basin from rivers as
a result of erosion processes on the land. Therefore inputs from atmosphere and land
contribute not only nutrients to support primary production but also reduced carbon
potentially respirable. To complete the picture on respirable carbon not produced in-15

side the basin we have also to account for the net DOC input through Gibraltar, which
is in the order of 0.3×1012moly−1 (Dafner and Bryden, 2001). Assuming a conserva-
tive OC/ON ratio of ten for the atmospheric inputs, its contribution is in the order of
0.35×1012moly−1 of organic carbon. Those very rough figures, which are likely on the
lower edge of real numbers because of the underestimated impact of anthropogenic20

activity, amount to ∼1.5×1012moly−1 of allochthonous organic carbon entering the up-
per layer of the water column. It is well known that intermediate and deep layers of the
basin display high oxygen utilization rates (Christensen et al., 1989; Roether and Well,
2001), which were further enhanced during the years of the Eastern Mediterranean
Transient (Klein et al., 2003; La Ferla et al., 2003, and references therein). High25

oxygen utilization rates have generally been attributed to DOC oxydation (Christensen
et al., 1989; Ribera d’Alcalá and Mazzocchi, 1999; La Ferla et al., 2003), part of which
may originally derive directly or from reprocessing of allochthonous carbon.
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In synthesis, MS displays lower nutrient values in the internal pool, especially for P,
than the ocean at similar latitudes. In addition, vertical transport is effective in bringing
them to the photic zone only in restricted areas: where convection is sufficiently deep,
in a small number of frontal regions and in the few upwelling sites. This enhances the
role of the inputs from the boundaries (atmosphere and coasts) in sustaining the new5

production of the basin and the whole Mediterranean food web.

3 Phytoplankton

3.1 Biomass and primary production

The first order response to the above described physical and chemical features is the
distribution of phytoplankton biomass as chl-a (Fig. 5), which displays generally low10

values (less than 0.2 µgchl−al−1) over large areas, with the exception of a large bloom
observed throughout the late winter and early spring in the Liguro-Provencal Region.
Pronounced phytoplankton blooms, though spatially limited, are also recorded in the
Alboran Sea and in the area of the Catalan-North Balearic front. Wind affecting win-
ter mixing and coastal upwelling, along with the presence of cyclonic structures, are15

considered to be the most relevant physical factors allowing the build-up of phytoplank-
ton biomass through the induced increase of nutrient availability. An exception to this
mechanism is the high biomass in the Alboran Sea, where the mesoscale dynamics
(front) associated with the inflow of Atlantic water plays a major role. More confined
high biomass spots are located near the coasts, especially in proximity to large river20

mouths or to extended continental shelf (e.g. Adriatic and North Aegean seas – the
latter associated with the local front).

Both satellite data and in situ values measured across the MS reveal a west-east
increasing oligotrophy gradient. The integrated chl-a concentration in May–June 1996
(Dolan et al., 1999) showed a west to east decline of a factor of about 7 (from 0.48 to25

0.07 mgCm−3). A similar trend was observed in June 1999 (Ignatiades et al., 2009)
and in September 1999, when however the easternmost stations were not sampled
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and the decline was smoother (Dolan et al., 2002; Marie et al., 2006). The eastward
latitudinal decrease is generally rather gradual and continuous across the WMS, with
a sharp change at the transition between the two sub-basins and much smaller gradient
if any, in the EMS. In addition to the west-east decrease, a decreasing chl-a gradient
from north to south is also evident from both satellite data and in situ studies in both5

the eastern and the western basin (e.g., Morel and André, 1991; Barlow et al., 1997),
with the exclusion of higher values along the Algerian coasts. These gradients clearly
reflect the physiography of the basin and the related circulation patterns.

An intriguing picture was issued by grouping sites with a similar seasonal cycle and
dynamics of chl-a values based on the whole SeaWiFS data set (D’Ortenzio and Rib-10

era d’Alcalá, 2009). Seven bioprovinces (sensu Longhurst, 2006) resulted from the
analysis (Fig. 6), which displayed markedly different patterns in the seasonal cycle.
The first province, mostly concentrated north of the North Balearic front (no. 5 in the
figure), presents a unique pattern, with a late winter-early spring bloom lasting more
than three months, typical for temperate areas, and a biomass increase up to 6 fold15

the background values. Other provinces show a typical subtropical cycle, with biomass
maxima centered in January but extending from December to early March. These
provinces (nos. 1, 2 and 3) include the EMS, the area across the Algerian coasts, the
areas affected by northerly continental winds (North Adriatic and North Aegean seas),
and areas possibly affected by dust input, mainly represented in the southeastern part20

of the basin. The annual range of phytoplankton biomass in these provinces is much
smaller, with maxima 2.5 fold the background values. Two provinces (nos. 6 and 7)
seem to be driven by river runoff and continental shelf dynamics. The last province
(no. 4), including e.g. the South Adriatic Sea, the Ionian Sea and the central part of the
western basin, is the most interesting. It apparently combines features for the temper-25

ate and subtropical mode: the autumn bloom, typical of temperate regions, is followed
by a progressive deepening of the thermocline and/or by the subsequent vertical trans-
port due to cyclonic or mesoscale frontal dynamics (D’Ortenzio and Ribera d’Alcalá,
2009).
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The relatively few in situ studies conducted in different periods of the year in the same
area confirm the patterns obtained from satellite data, showing seasonality in biomass
accumulation and production processes. At the station DYFAMED in the Ligurian sea,
the only offshore Mediterranean site regularly investigated over more than a decade,
the maximum values (up to 3 µgl−1) are observed in late winter-early spring (Vidussi5

et al., 2001; Marty et al., 2002). Similarly high peak values are recorded in the Catalan
front area (ca. 2 µgl−1 , Estrada, 1991; Estrada et al., 1993, 1999), whereas those
in the Alboran Sea are still higher (4.3 µgl−1, Mercado et al., 2005 and 7.9 µgl−1, Arin
et al., 2002). Notably, the spring peak values in the latter two areas were in many cases
detected in deep waters in response to local doming of nutrient-rich waters caused by10

the Atlantic current (Arin et al., 2002; Mercado et al., 2005). Both a strong chl-a signal
in late winter-spring and summer-autumn minima have been detected in many areas,
but the values and ranges are different between the two MS sub-basins The maxima
in the eastern basin rarely exceed 0.5 µgl−1 (Yacobi et al., 1995; Gotsis-Skretas et al.,
1999), and the minima are as low as 0.003 µgl−1 (e.g., Herut et al., 2000). Exceptions15

are the peak values of 1.34 µgl−1 in the frontal zone of the North East Aegean Sea
in April (Zervoudaki et al., 2007) and 3.07 µgl−1 in a small-scale cyclonic area of the
Northern Levantine Sea in March 1992 (Ediger and Yilmaz, 1996). The South Adriatic
and the Ionian seas show intermediate peak values (Boldrin et al., 2002; Nincevic et al.,
2002). An autumn increase is generally undetected (Psarra et al., 2000; Marty et al.,20

2002), although this could be due to the inadequate temporal sampling scale. Indeed,
a high frequency study conducted in a NW MS site, relatively close to the long term
station DYFAMED, showed a two-threefold variability in bulk phytoplankton parameters
(e.g. total chl-a and primary production) over a one-month period in the transition from
summer to autumn 2004 (Andersen et al., 2009; Marty et al., 2009).25

Low sampling frequency could also explain the high interannual variability, often of
the same magnitude of the seasonal variability, shown for the Cretan Sea (Psarra et al.,
2000) and for the Alboran Sea (Claustre, 1994; Mercado et al., 2005). Effects of cli-
mate variations are instead clearly seen in some areas of the basin which have been
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monitored more regularly over the years. For example, higher winter temperature and
low wind intensity caused a decrease in biomass in oligotrophic coastal waters off
Corse (Goffart et al., 2002), whereas an increase in biomass and production is re-
ported for the long-term Ligurian Sea station DYFAMED in recent years, probably due
to more intense winter mixing driven by circulation and wind (Marty, personal commu-5

nication). At the basin scale, chl-a variability in the MS appears to be related to main
climatic patterns of the northern hemisphere, namely, the East Atlantic pattern, the
East Atlantic/Western Russian pattern, the North Atlantic Oscillation, the East Atlantic
Jet and the Mediterranean oscillation (Katara et al., 2008).

Most of the times peak chl-a values (>2µgl−1) were localized in subsurface waters.10

This was the case for the Alboran Sea (Arin et al., 2002; Mercado et al., 2005) the
Catalan-North Balearic front (Estrada, 1991; Delgado et al., 1992; Estrada et al., 1999),
and for a cyclonic area of the North Levantine Sea (Ediger and Yilmaz, 1996). The
highest value ever measured in offshore MS (23 µgchl−al−1) was found in a 6 m thick
subsurface layer around 54 m depth in the Almeria-Oran frontal area in late November15

1987 (Gould and Wiesenburg, 1990). In addition to these deep biomass accumulations
in very dynamic areas, a deep chlorophyll maximum (DCM), generally not exceeding
1.5 µgchl−al−1, is a permanent feature for the whole basin over the entire annual cycle,
with the exception of the short period of the late winter mixing. The DCM progressively
deepens from west to east (Fig. 7) from 30 m in the westernmost area (Dolan et al.,20

2002), to 70 m in the South Adriatic Sea (Boldrin et al., 2002), down to 120 m (Christaki
et al., 2001; Dolan et al., 2002). This eastward deepening is probably related with
lower productivity and hence higher seawater transparency in the Levantine Sea, but
the level of DCM may vary notably between cyclonic and anticyclonic areas (Ediger
and Yilmaz, 1996). In the westerm MS the depth of the DCM is strongly affected by the25

Atlantic water inflow and by the consequent physical dynamics along the vertical axis
(Raimbault et al., 1993).

The distribution of biomass is clearly reflected in primary production rates (Table 1).
Satellite data range from 130 to 198 gCm−2y−1 over the years 1997–2001 (Bricaud
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et al., 2002; Bosc et al., 2004), with values for the EMed generally in the lower portion
of the range. Estimates from in situ incubation in previous decades were as low as
80–90 gCm−2y−1 (Sournia, 1973). More recent measurements get closer to satellite-
based estimates, e.g. in the Gulf of Lion (140–150 gCm−2y−1, Conan et al., 1998),
but remain consistently lower in other areas such as the Cretan Sea (59 gCm−2y−1,5

Psarra et al., 2000). A clear eastward reduction in primary production is reported
in the results from a late-spring (May-June) transmediterranean cruise (Moutin and
Raimbault, 2002), when maxima close to 1 gCm−2d−1 in the south western basin and
minima between 150 and 250 mgCm−2d−1 at several stations of the Levantine Sea
were measured (Fig. 8). Interestingly, estimates obtained in spring in other areas reflect10

the same spatial pattern and are within the same ranges as those shown by Moutin and
Raimbault (2002). Comparably high values (up to 1 gCm−2d−1) were reported in the
Catalan front area in March (Moran and Estrada, 2001), and in the Alboran Sea in
May-June (Lohrenz et al., 1988). At the DYFAMED station in the Ligurian Sea primary
production rates were 240–716 mgCm−2 (in 14 h) (Vidussi et al., 2001) but reached15

values as high as 1.8 gCm−2d−1 in April (Marty and Chiaverini, 2002). Measurements
at other sites of the EMS, namely in the South Adriatic Sea (Boldrin et al., 2002) and
in the North East Aegean Sea (Ignatiades et al., 2002; Zervoudaki et al., 2007), also
match the low values recorded by Moutin and Raimbault (2002).

Spatial and seasonal variability of primary production values can be high (Table 1),20

especially in very dynamic areas like the Alboran Sea (Macı́as et al., 2009) or the Cata-
lan Sea (Granata et al., 2004). Interannual variability of primary production may also
be high, mainly depending on the depth of the winter mixing (Estrada, 1996). In spite
of light limitation, the contribution of subsurface and DCM can be significant, reaching
in some cases 30% of the total production of the water column (Estrada et al., 1985).25

All in situ and satellite values of primary production reported above are estimates
for gross primary production and include a significant portion of recycled production.
New primary production is much lower, in the order of 4.5 molCm−2y−1 (1molC≡12gC)
and 1.5 molCm−2y−1 for the western and the eastern basin, respectively (e.g. Bethoux,
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1989), which add up to 3.6×1012 and 2.1×1012moly−1 of new carbon produced in the
two basins. Comparing those figures with the very rough estimate of allochtonous
carbon inputs for the whole basin (1.5×1012moly−1, see Sect. 2), we confirm that ex-
ternal inputs besides sustaining new production, actually introduce organic carbon at
rates comparable with new production rates, with relevant implications which will be5

discussed in Sect. 6.

3.2 Community structure and composition

At a first sight, the emerging picture from many studies shows the dominance of the
picophytoplankton as the fingerprint of the MS and of its overriding oligotrophy. As
mentioned above, the peculiar and notably diversified physical structure of the Mediter-10

ranean is reflected in the presence of areas of higher nutrient availability and intense
biological activity. Some of these areas are, for example, the permanent mesoscale
structures such as the Alboran gyres and the Catalan front and the sites of deep-
convection, such as the North Balearic area, the South Adriatic and the Rhodos cy-
clonic gyres (see the above sections). In those areas, different planktonic associations15

are found, in which cyanobacteria and picoeukaryotes often coexist or alternate with
diatoms, dinoflagellates and other flagellates belonging to different algal groups. The
strong seasonality ruling the basin also creates optimal conditions for the alternation
of phytoplankton populations dominated by different functional groups and species.
Finally, the DCM provides a still different set of environmental conditions where dis-20

tinct phytoplankton populations are found. In most areas, these diversified patterns in
species distribution can only be deduced from scattered studies.

This highly dynamic patchwork of populations that are different over the temporal
and spatial scale contrasts the situation of other oligotrophic seas generally reported
to host rather stable phytoplankton (e.g. Goericke, 1998; Venrick, 2002). The infor-25

mation available is too heterogeneous to allow tracing large scale patterns in species
distribution that can parallel the spatial patterns in biomass and production depicted in
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the previous section. However, from the few studies conducted across the basins it ap-
pears that spatial differences in phytoplankton populations are not simply quantitative.
For example, chemotaxonomic studies showed that in late spring 1996 prymnesio-
phytes and 19-BF containing taxa (mainly chrysophytes and pelagophytes) decreased
eastward while cyanobacteria, did not vary significantly across the basin (Dolan et al.,5

1999). Indeed, longitudinal biomass patterns in September 1999 seemed to be mainly
caused by a decrease in microplankton and nanoplankton rather than by picoplankton
(Dolan et al., 2002) (Fig. 9). In the early summer of the same year, an eastward in-
crease in the diversity of dinoflagellates and mainly of coccolithophores was reported
across the basin, whereas an opposite trend was evident for diatoms (Ignatiades et al.,10

2009). Finally, significant latitudinal differences were evidenced in chemotaxonomic
markers of the different phytoplankton groups in summer 1993 across the WMS basin,
when nanoflagellates were more important in the northern stations as compared to the
southern ones (Barlow et al., 1997).

In the following, we present a brief account of the main microalgal groups in the MS15

in different conditions. The rationale behind an appraisal by species groups is that,
given the differences in ecophysiological characteristics among the various groups,
insights can be gained from their distribution on the prevalent environmental conditions.
On the other hand, the different groups depicted below are included in completely
distinct trophic pathways, and can hence provide information on the fate of autotrophic20

production.

3.2.1 The smallest fraction (prochlorophytes, Synechococcus, picoeukaryotes)

Like in most oligotrophic and subtropical oceanographic regions, (Takahashi and Bi-
enfang, 1983; Takahashi and Hori, 1984; Li, 2002), in the MS low biomass values are
generally associated with the dominance of cyanobacteria, prochlorophytes and tiny25

flagellates (Yacobi et al., 1995; Dolan et al., 2002; Ignatiades et al., 2002; Casotti et al.,
2003; Brunet et al., 2007; Tanaka et al., 2007). As an average on the whole basin,
this smallest fraction of the phytoplankton, which is generally ignored in routine light
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microscopy counts, contributes for 59% of the total chl-a and 65% of the primary pro-
duction. However the values widely vary depending on the locations, depths, seasons
as well as on the method used and size fraction considered (Magazzù and Decembrini,
1995). In the eastern Basin, values up to 80% of total biomass were reported for wa-
ters off Israeli coast (Berman et al., 1984) and in the Straits of Sicily during the summer5

(Brunet et al., 2006). With the exception of the highly dynamic mesoscale structures,
picoplankton dominates the upper water layers of the Eastern Basin through most of
the year, e.g., in the southern part of the Levantin Basin in autumn (Yacobi et al., 1995),
in the Straits of Sicily in July (Brunet et al., 2007), in the Cyprus eddy in May (Tanaka
et al., 2007), in the Ionian Sea in April/May (Casotti et al., 2003) and in the Aegean Sea10

(Ignatiades et al., 2002). Picoplankton is often dominant also in the DCM, both in the
western basin, e.g. at DYFAMED (Marty et al., 2002) or in the Aegean Sea (Ignatiades
et al., 2002).

Among picoplankton, Synechococcus and Prochlorococcus can reach abundances
up to 104cellsml−1 (Zohary et al., 1998; Christaki et al., 2001). At the NW Mediter-15

ranean station DYFAMED, Synechococcus is dominant in the upper layers in strati-
fication periods when, despite the pronounced oligotrophy, it is apparently responsi-
ble for maximum photosynthetic efficiency (Pb) values probably due to its capacity to
cope with low nutrient conditions (Marty and Chiaverini, 2002). Like in other oceans,
prochlorophytes are instead found most often in deeper layers in stratified conditions20

(Yacobi et al., 1995), while they become abundant at surface over the autumn/winter
(Fig. 10, Marty et al., 2002). In the EMS also, Prochlorococcus presents a typical distri-
bution with a very sharp maximum concentration near the bottom of the euphotic zone
(Zohary et al., 1998; Partenski et al., 1999; Christaki et al., 2001). However, prochloro-
phytes have also been found to be abundant in surface waters in summer (Vaulot et al.,25

1990). This contradictory distribution can be explained by the existence of two distinct
ecotypes of Prochlorococcus (Moore et al., 1998), showing preferences for high-and
low-light conditions, respectively. Both types, substituting one another along the water
column, have been identified in the MS (Brunet et al., 2007).
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In addition to prokaryotes, quite a high diversity of eukaryotes may be found within
the picoplanktonic fractions, among which prasinophytes, pelagophytes, prymnesio-
phytes and chrysophytes. Tiny (<3µm) autotrophic and heterotrophic flagellates in the
order of 103–104cellsml−1 have been reported to be the dominant component in cell
numbers among flagellates when these are enumerated using epifluorescence counts5

(Christaki et al., 2001). Several non-colonial picodiatoms (e.g., some Chaetoceros,
Thalassiosira, Minidiscus, Skeletonema and some cymatosiracean species) have also
found to be abundant in some cases (Delgado et al., 1992, Percopo and Zingone, un-
published data), although their small size may prevent their identification even at the
class level.10

Picoeukaryotes in some cases have shown specific distribution patterns, mainly
gleaned from their specific pigment signatures. For example, in the Straits of Sicily,
the <3µm fraction in summer stratified oligotrophic conditions (0.010–0.60µg chl-a l−1

below 50 m) was dominated by picoeukaryotes, largely prymnesiophytes, which grad-
ually replaced the prokaryotes that were dominant in the upper layers (Brunet et al.,15

2007). Pelagophytes have been found to be important in deep waters at several places,
e.g., in the Alboran Sea (Claustre et al., 1994) and in other areas of the western MS
(Barlow et al., 1997), as well as in the Straits of Sicily (Brunet et al., 2006, 2007).

In general, it is difficult to interpret the apparent differences in the distribution and rel-
ative contribution of eukaryotes to picoplanktonic biomass, mainly because of the few20

and scattered data and of the rather low and different taxonomic resolution provided by
the various identification methods (e.g. flow-cytometry, epifluorescence, electron mi-
croscopy and chemical taxonomic methods). However, recently developed molecular
methods not only add evidence of the actual abundance and diversity of tiny eukary-
otes but also allow tracing their seasonal succession (McDonald et al., 2007) and fine25

distribution (Fig. 11; Marie et al., 2006; Foulon et al., 2008). A more extensive appli-
cation of these methods in oceanography will contribute to build up knowledge on the
specific ecological role of the least known component of the MS phytoplankton.
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3.2.2 The nanoplankton

The size component smaller than 20 µm, commonly defined as nanoplankton, is mainly
constituted of small flagellates (generally <5µm) and dinoflagellates, mostly naked
species, in addition to a limited number of small solitary diatom species. Single cells
of colonial diatoms are often also smaller than 20 µm, but they are treated separately5

because of their larger functional size and quite distinct ecological role. Small nanoflag-
ellates are the dominant group in terms of cell numbers most of the year in oligotrophic
MS waters (Decembrini et al., 2009; Revelante and Gilmartin, 1976; Malej et al., 1995;
Totti et al., 1999). Similarly to the <3µm eukaryotic fraction, a long-standing lack of
taxonomic resolution for this heterogeneous group has lead to the view that it does10

not vary significantly in quality and quantity over time and space, probably because
it is kept in check by equally fast-growing predators (Banse, 1995; Smetacek, 2002).
However, there are several indications that nanoflagellates do vary in space and time,
and may also significantly contribute to blooms, e.g., in the Catalan Sea (Margalef
and Castellvı́, 1967) or at DYFAMED (Marty et al., 2002). From pigment signatures,15

prymnesiophyceans often represent a large part of them most of the year and at sev-
eral places (Latasa et al., 1992; Claustre, 1994; Bustillos-Guzmán et al., 1995; Barlow
et al., 1997; Zohary et al., 1998). Among the few mentioned taxa there are the species
of the genus Phaeocystis, which may form large, recognisable colonies (see the sec-
tion on microplankton below), but are not easily detected when they are in the flagel-20

late stage. Among prymnesiophytes, the coccolithophores deserve a special mention,
as they show a high diversity in the MS (Cros and Fortuno, 2002). The widespread
species Emiliania huxleyi is generally the dominant coccolithophore, although it does
not seem to form such spectacular blooms as those revealed by satellite images, e.g.,
in the North Sea. Coccolithophores have been found to constitute large part of the pop-25

ulation in autumn and winter, e.g., in the Rhodos gyre area (64%, Gotsis-Skretas et al.,
1999; Malinverno et al., 2003), in the Aegean Sea (Ignatiades et al., 1995), South Adri-
atic and Ionian Sea (Rabitti et al., 1994). A consistent fraction of coccolithophores was
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reported also in winter offshore the Catalan Front (Estrada et al., 1999), or in spring in
the Aegean Sea (Ignatiades et al., 2002) and maximum fluxes were recorded in winter-
spring in the central EMS (Ziveri et al., 2000). In a June 1999 transmediterranean
study, coccolithophores were found to be more diversified and abundant at eastern
stations than at western ones (Ignatiades et al., 2009).5

Cryptophytes, often only detected by their marker pigment alloxanthin, are gener-
ally more abundant when diatoms are also abundant, e.g. in winter and spring at the
station DYFAMED (Vidussi et al., 2001; Marty et al., 2002) or in the Cretan Sea (Gotsis-
Skretas et al., 1999). In this group, species names often mentioned in light microscopy
investigations should all be reconsidered, as most species can only be recognised in10

live samples or using electron microscopy (Cerino and Zingone, 2007).
As for small dinoflagellates, they mainly include naked autotrophic and heterotrophic

species which are poorly known and are not identifiable in light microscopy. In addition,
their pigment signature may overlap with that of other flagellate groups. All informa-
tion about these nano-dinoflagellates derives from microscopic counts, based on which15

they are less abundant than flagellates but much larger and hence more important in
terms of biomass, especially in late spring and summer. In the eastern basin, dinoflag-
ellates were reported to be dominant in different seasons and especially in stratified
conditions (Berland et al., 1987; Gotsis-Skretas et al., 1999; Totti et al., 2000; Psarra
et al., 2000; Ignatiades et al., 2002), although the flagellates <5µm were not enumer-20

ated in these cases. Some small thecate species such as Prorocentrum (P. minimus,
P. balticum), Heterocapsa or Scrippsiella-like species are also part of this component,
but they are generally not abundant in MS offshore waters.

3.2.3 The colonial and large diatoms

The general rule that the contribution of picoplankton and nanoplankton decreases25

along with the increase of chl-a concentration (Li, 2002) is also valid for the MS. The
presence, and at times the dominance, of colonial diatoms that are part of the size frac-
tion larger than 20 µm (microplankton) belonging to several genera (Asterionellopsis,
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Chaetoceros, Thalassiosira, Thalassionema/Thalassiothrix, Pseudo-nitzschia) is as-
sociated with relatively dense biomass accumulation that in the MS is typical of very
different situations, namely i) the winter bloom, ii) the deep convection, gyre and front
areas, and iii) the summer-autumn DCM.

A diatom increase is evident at many sites of the WMS (Marty et al., 2002; Claustre5

et al., 1994) and EMS (Gacic et al., 2002; Wassmann et al., 2000) in February-March,
confirming the consistent anticipation of the vernal bloom as “the unifying signature” of
the basin (Margalef and Castellvı́, 1967; Duarte et al., 1999). However these events
are very ephemeral in offshore waters. For example, a diatom increase is regularly
recorded at DYFAMED in February–March (Fig. 10), but an actual bloom is missed10

by the monthly measurements of primary production (Marty and Chiaverini, 2002).
No diatom bloom was detected either during a February cruise in the Adriatic Sea
(Totti et al., 1999), whereas in January and in March diatoms reached 58 and 37%,
of the >5µm fraction of the phytoplankton, respectively, in the Cretan Sea (Gotsis-
Skretas et al., 1999), and 88% at shelf stations (Psarra et al., 2000). Notably, massive15

sedimentation events are often recorded in the Mediterranean Sea in winter (Miquel
et al., 1994; Stemmann et al., 2002), suggesting that these diatom blooms are scarcely
exploited by zooplankton populations (Duarte et al., 1999; Ribera d’Alcalá et al., 2004),
but are rather a resource for the zoobenthos of the underlying bottom (López et al.,
1998; Zupo and Mazzocchi, 1998), for which winter is not a resting period (Coma et al.,20

2000), probably as an adaptation to the recurrent food rain from above (Duarte et al.,
1999; Calbet, 2001).

In addition to the winter bloom, diatoms also dominate, and for longer periods, in
deep convection areas. There, mixing largely exceeds the critical depth but blooms are
possibly allowed by brief periods of quiescence. Colonial species belonging to the gen-25

era Pseudo-nitzschia and Chaetoceros largely dominated in spring in deep convection
areas of the North Balearic sea (Zingone and Sarno, unpublished data). In the Otranto
Straits, high concentrations of healthy Chaetoceros were found as deep as 500 m (Vili-
cic et al., 1989). Apparently, diatoms in highly dynamics areas are only associated
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with the highest biomass values. For example, prymnesiophytes and prokaryotes in-
stead of diatoms dominated in March in the Cyprus eddy, with moderately high chl-a
concentrations (59 mgm−2 at the core and 45.5 mgm−2 at the boundary) (Zohary et al.,
1998).

Colonial, bloom forming diatoms belonging to the genera Chaetoceros, Thalas-5

siosira, Proboscia, Rhizosolenia, Leptocylindrus are generally the main contributors
also to high chl patches in the very dynamic environments associated with fronts and
gyres (Fiala et al., 1994; Arin et al., 2002; Ignatiades et al., 2002; Zervoudaki et al.,
2006, 2007). These structures, which are seen both in the WMS and EMS (see the
above section), have been defined the “oasis” of the Mediterranean desert (Claustre10

et al., 1994). The biological phenomena that they drive are spatially heterogeneous,
strictly depending on water mass dynamics and show a very high temporal dynamics,
besides a marked interannual variability (Mercado et al., 2005).

Diatom-dominated chl-a peaks are often found in subsurface waters (Arin et al.,
2002), as in the exceptional case of a monospecific blooms of a Thalassiosira (probably15

Th. partheneia) forming gelatinous colonies (∼106cellsl−1 and 23 µg chl-a l−1), which
was detected at 54 m depth in the Almeria-Oran front area (Gould and Wiesenburg,
1990). The formation and dynamics of these deep accumulations are strictly linked
to the frontal circulation (e.g., Raimbault et al., 1993) and therefore are quite different
from those characterizing the development of the seasonal DCMs.20

A significant contribution of diatoms to the DCM has been reported from many areas
of the MS, e.g. the Catalan Sea (Margalef, 1969), Southern Adriatic Sea (Boldrin et al.,
2002) and Cretan Sea (Gotsis-Skretas et al., 1999). The frequent finding of the same
species that are typical of the high production situations described above, supports the
hypothesis that the DCMs are sites of active growth, rather than of passive accumu-25

lation. Here diatoms are found in association with picoplankton or, at times, markedly
dominating the subsurface populations (e.g. Decembrini et al., 2009). The relative
importance of diatoms may vary greatly over the time and across sites (Estrada and
Salat, 1989; Estrada et al., 1993). In one of the few cases of across-basin studies at
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the species level (Ignatiades et al., 2009), diatoms seemed to be by far less abundant
in the Levantine basin DCM as compared to the stations in the western basin (Fig. 11).
Interestingly, in the summer DCM at the station DYFAMED, diatoms are associated with
the highest chl-a concentrations and sit under a layer occupied by prochlorophytes and
nanoflagellates, whereas Synechococcus dominates in the above oligotrophic waters5

(Marty and Chiaverini, 2002). This vertical zonation, similar to that reported in the At-
lantic waters (Claustre et al., 1994), points at a tightly structured system, within which
the distinct phytoplankton components may have different ecological roles.

While colonial Chaetoceros species are a rather constant feature of diatom-
dominated DCMs, the accompanying assemblages seem to vary from area to area.10

For example, Pseudo-nitzschia, Rhizosolenia and Thalassiosira were reported in the
Catalan-Balearic DCM (Latasa et al., 1992), while Leptocylindrus danicus, Pseudo-
nitzschia delicatissima, Thalassionema nitzschioides were found in the Southern Adri-
atic Sea (Boldrin et al., 2002). To the east, Bacteriastrum, Hemiaulus, Thalassionema,
Thalassiothrix were found south of Crete in July (Berland et al., 1987), whereas P. deli-15

catissima, Dactyliosolen fragilissimus, and Thalassiothrix frauenfeldii were found north
of Crete in June (Gotsis-Skretas et al., 1999). Finally, in the Southern Tyrrhenian Sea
the DCM was dominated only by Leptocylindrus danicus in June 2007 (Percopo and
Zingone, unpublished data). These differences in species composition are relevant but,
to assess their actual consistency and ecological significance, more observations are20

needed. Overall, the intermittent and most probably undersampled pulses of diatom
growth in deep waters might contribute explaining the mismatch between the relatively
few reports of diatoms in phytoplankton samples and the high amount of biogenic silica
found in surface sediments and sediment traps (Kemp et al., 2000).

While the above-mentioned colonial species often appear in relatively high con-25

centrations, other large-sized diatoms are found at lower concentrations in the off-
shore MS waters. These large diatoms have been indeed reported as responsible for
a substantial and underestimated fraction of primary production in oligotropic waters
characterized by a strong seasonal thermocline and nutricline in areas outside the MS
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(Goldman, 1993) however they have a patchy or sparse distribution and are generally
not sampled properly. Among them are some of the large Rhizosolenia species, which
may form migrating mats in other oceans (Villareal et al., 1996), and together with
species of the genus Hemiaulus, may host the diazotrophic cyanobacteria Richelia in-
tracellularis, thus playing a role in nitrogen fluxes in the pelagic ecosystems (Villareal,5

1994; Villareal et al., 1996). However, diatom-diazotroph associations do not seem to
form large-scale blooms off the Israeli coast, possibly because of P-limitation in those
waters (Zeev et al., 2008).

3.2.4 Other microplankton species

The diversity of microplanktonic dinoflagellates is very high in the MS (Marino, 1990;10

Gómez, 2006), although their importance in terms of biomass is rather low and their
ecological role is still to be assessed. Indeed, quantitative information is very frag-
mentary for this group, which has often been aggregated with the small dinoflagellates.
In the size fraction higher than 20 µm, dinoflagellates are generally more abundant
than diatoms, with the exception of the cases of high productivity mentioned above15

(Marty et al., 2009). The species most commonly reported are those of the genera
Gymnodinium, Gyrodinium, Ceratium, Protoperidinium, Oxytoxum, which are gener-
ally associated with warm and stratified waters (Estrada, 1991). Very few are the cases
when the percentage contribution of species of this group is high. One such case is
Oxytoxum spp. reaching 12% of total cell counts in the Alboran Sea (Lohrenz et al.,20

1988). Indeed, as for diatoms, the larger-sized species are not sampled properly most
of the time, and can also escape capture because they are can effectively swim. Like
in the case of the largest diatoms, the role of this component can be relevant despite
its low abundances. Some of them, e.g., in the genera Ornithocercus, Histioneis and
Citharistes, can host endosymbiotic cyanobacteria that would allow their existence,25

under severe nitrogen limitation (Gordon et al., 1994).
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Species of the widespread genus Ceratium may be mixotrophic (Smalley and Coats,
2002), occupy selected depths (Tunin-Ley et al., 2007), and constitute good biologi-
cal indicators of warming in the MS (Tunin-Ley et al., 2009). Finally, Protoperidinium
spp. and several athecate dinoflagellates in the genera Gymnodinium, Gyrodinium
and Lessardia are truly phagotrophic and may constitute a main part of the microzoo-5

plankton (Sherr and Sherr, 2007), but their importance in the offshore Mediterranean
has rarely been assessed (see Margalef, 1985). Finally the silicoflagellates Dicty-
ocha and Distephanus are also a constant although scarce component of offshore MS
plankton, their abundance reaching the highest values in surface waters in winter (Totti
et al., 2000) or in deeper waters in spring-summer (Lohrenz et al., 1988; Estrada et al.,10

1993).
In addition to dinoflagellates and silicoflagellates, a few flagellates that can form large

colonies are also part of the offshore microplankton at least in some phases of their life
cycle. One of these is the key species Phaeocystis cf. globosa (often reported in the
Mediterranean Sea under the name of the congeneric, cold-water species P. pouchetii),15

which can form spherical colonies reaching a few millimeter diameter. The species
has occasionally been recorded as abundant in the Catalan Sea (e.g., Estrada, 1991)
where its importance is apparently increasing over the last years (Margalef, 1995).
Another interesting species is the prasinophyte Halosphaera viridis, which has been
found down to 1000 m in autumn-winter (e.g., Kimor and Wood, 1975) but then rises20

to shallow water in spring. Such extensive migrations could account for considerable
upward recycling of carbon and nutrients (Jenkinson, 1986). Unfortunately, like in the
case of large dinoflagellates and diatoms, there are not many data on the distribution
of these interesting microplanktonic taxa in offshore waters, due to the limited usage of
net samplers in recent phytoplankton studies.25
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4 Heterotrophic microbes and viruses

In the MS the hypothesis of phosphate limitation of primary production, firstly demon-
strated by Berland et al. (1980), and the remarkably pronounced gradient of P de-
pletion from west-to-east (Krom et al., 1991; Thingstad and Rassoulzadegan, 1995,
1999), have inspired numerous studies dealing with microbial processes. Recent tech-5

nological and conceptual breakthroughs are beginning to allow us to address biologi-
cal complexity in terms of diversity and open new perspectives in integrating microbial
loop processes into predictive models of ecosystem functioning. Here we describe the
different components and processes within the microbial food web focusing on het-
erotrophic microbes, including the viral shunt, in the Mediterranean open sea waters.10

Based upon data published over the last 25 years, we attempt to establish some large-
scale patterns of abundance and activities for viruses, bacteria and protists along the
Mediterranean west-east gradient.

4.1 Viruses

The net effect of viruses relevant to the pelagic food web is the transformation of partic-15

ulate organic matter (the host) into more viruses, and returning biomass into the pools
of dissolved and colloidal organic matter – “the viral shunt”. Studies on viruses in the
open MS are few, even less than in other marine areas. To date, most Mediterranean
work has examined viral control on bacterial accumulation rather than characterization
of the viral community. The studies have revealed viral abundances in the surface wa-20

ters which vary from 0.08±0.01×107 to 1.6±4.8×107virusesml−1, while lower values
occur in deeper waters (Fig. 12, Table 2). In the MS as elsewhere, viral abundances in-
crease from the oligotrophic to more eutrophic waters. Existing data (Table 2) also sug-
gests that while viral abundance correlates with chl-a concentration (n=46, r=0.409,
p<0.05), a tighter relationship exists between viral and bacterial abundances (n=46,25

r=0.549, p<0.01) implying that bacteria are more probable virus hosts than phyto-
plankton cells. Viral concentrations are related to both bacterial abundances (n=24,
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r=0.520, p<0.05) and bacterial production (n=24, r=0.421, p<0.05). The low corre-
lations between viral and bacterial abundance reflect in part the fact that the virus to
bacteria abundance ratio (VBR) in the upper 200 m layer of the MS varies between 5
and 50 (Fig. 12). The wide range of this ratio, suggests that viruses may belong to dif-
ferent types of host organisms, and/or that viral concentrations are temporally variable5

with different samplings reflecting different phases of infection and release from host
cells.

Comparing the WMS and EMS, viral and bacterial abundances to the west appear to
be more tightly coupled than to the east (Fig. 13 and Table 3). However, these trends
have to be taken cautiously, because the number of samples for the EMS are rela-10

tively few, and differences between slopes are not statistically significant (t-student,
tvalue=2.3; p=0.17). Viral infection accounts for less than 20% of bacterial mortality
in the Catalan Sea thus being definitely less important than mortality due to grazing
by protists (Guixa-Boixereu et al., 1999a,b). However, virus-induced mortality can oc-
casionally prevail over grazing by heterotrophic nanoflagellates, for example at higher15

bacterial abundances in coastal waters (Weinbauer and Peduzzi, 1994). In a gradient
from eutrophic to oligotrophic waters of the Adriatic Sea, viral production was higher in
eutrophic areas and viral decay rates were not balanced by viral production rates over
short time scales (Bongiorni et al., 2005).

Alonso et al. (2002) characterized 26 bacteriophages of the viral community found in20

the Alboran Sea. Most of them belonged to two of the three tailed families of the order
Caudovirales; phages were grouped in 11 classes on the basis of protein patterns and
sizes of viruses were between 30 nm to >100nm. Different morphotypes of bacteria
hosted viruses of different sizes. Thus, virus between 30 and 60 nm mainly infected
rods (74%) and spirillae bacteria (100%), while viruses between 60 to 110 nm were25

mostly found inside cocci (65.5%).
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4.2 Bacteria

The first study in the open Mediterranean examined the ultra-oligotrophic waters of
the Levantine Sea (Zohary and Robarts, 1992) and showed that bacterial abundance,
at 3×108cellsl−1, clustered around the lower threshold of the world ocean (Cho and
Azam, 1990). In the MS, while bacterial numbers are quite stable and bacterial produc-5

tion is low (Table 4) there are important variability aspects to consider: (i) the west-east
gradient of increasing bacterial production (Christaki et al., 2001; Van Wambeke et al.,
2000, 2002), and (ii) the enhanced metabolic activities and production related to spe-
cific hydrologic discontinuities, such as currents, eddies and frontal areas (Fernàndez
et al., 1994; Moran et al., 2001; Van Wambeke et al., 2004; Zervoudaki et al., 2007).10

Interestingly, the slopes of log-log linear regressions for bacterial biomass and bac-
terial production obtained for WMS and EMS (Fig. 14a) are not significantly different
(tvalue=−0.22; p=0.85) with both slopes being smaller than 0.4, thus suggesting top-
down control on bacteria (Billen et al., 1990; Ducklow, 1992).

Following the general pattern of increasing oligotrophy eastward, bacterial produc-15

tion is several times lower in the eastern than in the western basin (Turley et al., 2000;
Van Wambeke et al., 2000, 2002). However, the relationship between bacterial produc-
tion and primary production is quite similar in the EMS and WMS. Updating Turley et al.
(2000) data set (Table 3), plots of log bacterial production (BP) and log primary pro-
duction (PP) for the WMed and the EMed display similar positive slopes (tvalue=−0.22;20

p=0.87) (Fig. 14b). The significant positive relationship between BP and PP suggests
that primary production is an important source of DOC fuelling bacterioplankton.

A crucial factor that might limit bacterial production in the MS is the availability of in-
organic nutrients, especially phosphorus. A nutrient control on bacterial production, as
well as on bacterial adaptations to cope with the oligotrophy of the open MS, have been25

experimentally approached in a number of studies. During a Lagrangian experiment,
phosphate addition to ultra-oligotrophic surface waters of the Levantine Sea, caused
an unexpected ecosystem response: a decline in chl-a concentration and an increase
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in bacterial production. It has been hypothesized that while phytoplankton was con-
currently N and P limited, bacterial growth was mainly limited by phosphorous (Pitta
et al., 2005; Thingstad et al., 2005; Zohary et al., 2005). However, while phosphorus
is usually the limiting nutrient, nitrogen and carbon limitation or co-limitation also oc-
curs, and the type of limitation can vary with depth (Sala et al., 2002; Van Wambeke5

et al., 2000, 2009). It seems that the bacterioplankton of the oligotrophic Mediterranean
live in a dynamic equilibrium in which slight changes in grazing pressure, competition
and nutrient concentrations can shift the communities from limitation by one nutrient
to another (Sala et al., 2002). Indeed, over time scales of a few hours, large shifts in
abundance, production, and portions of particle-attached or free-living bacteria have10

been documented (Mével et al., 2008).
The metabolism of natural communities of bacterioplankton has been studied in

terms of enzymatic activity and dissolved amino-acid (DFAA) uptake; these param-
eters are indicators of the uptake of dissolved organic matter by bacteria and the fac-
tors possibly influencing uptake (Karner and Rassoulzadegan, 1995; Van Wambeke15

et al., 2000, 2004; Christaki et al., 2003; Misic and Fabiano, 2006). For example, in
a longitudinal study across the MS, alkaline phosphatase activity was used as indica-
tor of bacterial P-limitation (Van Wambeke et al., 2002). Alkaline phosphatase turnover
times less than 100 h were documented and corresponded to situations of P limitation
of bacterial production. In a study conducted in the Aegean Sea, ectoaminopeptidase20

activity was weakly related to bacterial production, but tightly coupled with respiration
rates of amino acids; moreover, the percentage of respiration of DFAA was relatively
high (50±18%) (Christaki et al., 2003). The authors hypothesized that bacteria used
the amino acids added in the samples to meet energy requirements for cell mainte-
nance rather than biomass production.25

Surprisingly little information exists on bacterial respiration (BR) and bacterial growth
efficiency (BGE=BP/[BP+BR]) and furthermore, the studies are limited to the WMS.
However, the studies underline the importance of BR to total plankton community res-
piration. The mean portion of BR to community respiration was 65% in the NW MS
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(Lemée et al., 2002), and an average value of 52% (range 41 to 85%) was recorded
closer to the coast (Navarro et al., 2004). It is noteworthy that BR as a percent of total
community respiration increased with the percentage of high DNA bacteria. Bacterial
respiration rates ranged from ∼0 to 3.64 µmolO2 l−1d−1 (Lemée et al., 2002; Navarro
et al., 2004).5

Generally BGE tends to be low in oligotrophic systems, perhaps because most of the
DOC pool is recalcitrant and inorganic nutrients are scarce (del Giorgio et al., 1997).
In the MS an accumulation of DOC in the surface waters has been hypothesized as
resulting from nutrient limitation of bacterial activity, specifically BGE (Thingstad and
Rassoulzadegan, 1995; Gasol et al., 1998). Indeed, in the Almeria-Oran geostrophic10

front and adjacent Mediterranean waters BGE was estimated to be 7% (Sempéré et al.,
2003). Conversely, in a study over a year in the NW MS, Lemée et al. (2002) report
that BGE ranged widely, from 0.1 to 43%. These authors underline that they could not
identify any regulatory mechanisms of BGE and respiration over this period.

Preliminary microbial diversity studies from Mediterranean samples revealed a con-15

siderable diversity of unknown prokaryotes (e.g., Pukall et al., 1999). Community fin-
gerprinting by 16S rDNA restriction analysis applied to WMS offshore waters showed
that the free-living pelagic bacterial community was very different from that living
on aggregates (Acinas et al., 1997, 1999) and similar results were obtained in the
EMS (Moesender et al., 2001). A study of the bacterial assemblages carried out off-20

shore Barcelona using the DGGE (denaturing gradient gel electrophoresis) technique
showed that diversity index followed a seasonal dynamics, but bacterial assemblages
were relatively similar over 10’s of kilometres suggesting that coastal areas might be
characterized by rather homogeneous communities (Schauer et al., 2000). Distinct
communities, stable over the time-scale of a month were found in different depth strata25

between 0 and 1000 m by Ghiglione et al. (2005, 2008) in the NW Mediterranean. In
terms of temporal stability, a rather stable taxonomic composition of bacterioplankton
was reported over time for Blanes Bay (Alonso et al., 2002; Schauer et al., 2003).
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4.3 Protists

4.3.1 Heterotrophic nanoflagellates

In open MS, heterotrophic nanoflagellates (HNF) are usually dominated by small cells
(≥80% less than 5 µm) with total abundances between 105 and 106cellsl−1 (Zohary and
Robarts, 1992; Christaki et al., 1999, 2001, Tables 3 and 4). Nanoflagellate bacterivory5

is important, accounting from 45 to 87% of daily bacterial production in an East-West
Mediterranean transect (Christaki et al., 2001). Spatially variable bacterivory rates
were reported for the NW Mediterranean, ranging from <10 to 100% of bacterial pro-
duction with bacterial consumption positively correlated with the presence of High-DNA
bacteria (Vaqué et al., 2001). In the Aegean Sea, bacterivory by HNF and mixotrophic10

nanoflagellates roughly balanced bacterial production (Christaki et al., 1999).
Although the number of papers reporting HNF abundance and their grazing activity is

limited (Table 4), they provide a quite good spatial coverage of the open Mediterranean,
and overall suggest that bacterivory is the dominant cause of bacterial mortality. Ac-
cording to the model of Gasol (1994), the plot of the relationships between log HNF15

abundance (HNF, ml−1) and log bacterial abundance (ml−1) suggests that HNF are re-
source, or bottom-up, controlled by bacteria (Fig. 14c). A tight coupling of HNF and
bacterial concentrations supports the view that bacteria are top-down controlled as we
have suggested above (Fig. 14a).

Little is known about HNF diversity in the Mediterranean; Massana et al. (2004)20

constructed genetic libraries of picoeukaryotes from surface coastal picoplankton. Four
libraries were constructed from Blanes Bay (NW Mediterreanean); they belong to the
MAST-4 group (marine stramenopiles).

4.3.2 Ciliates

Ciliate abundance in the Mediterranean Sea at different sites and in different seasons25

displays a remarkably high variability. For example, in the Catalan Sea in June, the
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highest values of about 850 cellsl−1 were found at the DCM whereas in the Ligurian
Sea in May average surface layer values (5–50 m) were ∼3.3×103cellsl−1 with a maxi-
mum of ∼104cellsl−1 (Peréz et al., 1997). These high values contrast with those for the
Aegean Sea, where ciliate abundance were always lower than 5×102cellsl−1 (Pitta and
Giannakourou, 2000). Lower concentrations in the EMS, compared to WMS, are not5

the general rule. Pitta et al. (2001) reported a 2-fold decrease in ciliates concentration
from west to east. However, a decline in concentrations along the west-to-east olig-
otrophy gradient has not been found to be always true for ciliates standing stock (e.g.,
Dolan et al., 1999). It could be that the relationship between ciliate abundance and
chl-a concentration is stronger in the WMS than in the EMS indicating a better coupling10

with phytoplankton stock in the WMS (Fig. 15). However, differences between slopes
are not statistically significant (tvalue=1.7; p=0.23) probably, due to the restricted data
set for the eastern part (Table 3).

Since most of the primary production in the Mediterranean is due to nano- and pi-
cophytoplankton (see phytoplankton section of this review) one can expect that ciliates15

are likely important grazers (Rassoulzadegan, 1978; Rassoulzadegan and Etienne,
1981). Ciliate grazing impact can be about 50% of the primary production in the Cata-
lan Sea and ciliate maximum abundance was found near the DCM (Dolan and Marrasé,
1995). In the Ligurian Sea, Peréz et al. (1997) estimated that ciliates could graze from
8 to 40% of primary production. The importance of ciliates as primary production con-20

sumers seem to be higher in the EMS (Dolan et al., 1999; Pitta et al., 2001).
In the MS, as in all marine systems, planktonic ciliates are dominated by the order

Oligotrichida (Lynn and Small, 2000). Within that order, the aloricate naked forms are
the main group (Margalef, 1963; Travers, 1973; Rassoulzadegan, 1977, 1979). An
important aspect of ciliate ecological diversity is linked to their trophic type as well as25

their size, since both affect their role within the food web. As a percentage of total
ciliates, the mixotrophs can vary between <10% to almost 100% (Verity and Vernet,
1992; Bernard and Rassoulzadegan, 1994). Dolan et al. (1999) have found that large
mixotrophic ciliates were more abundant, both in absolute and relative terms, in the

11218

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/11187/2009/bgd-6-11187-2009-print.pdf
http://www.biogeosciences-discuss.net/6/11187/2009/bgd-6-11187-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
6, 11187–11293, 2009

Mediterranean
plankton

I. Siokou-Frangou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EMS than in the WMS. In a later study across the Mediterranean Sea, Pitta et al.
(2001) confirmed that pattern reporting that mixotrophs represented 17% and 18% in
abundance and biomass, respectively and they were from 3 to 18 times more abundant
in the EMS (although with lower total ciliate abundance) than the WMed. In the Ligurian
Sea nano- and micro-mixotrophic ciliate contribution to total oligotrich biomass and5

abundance ranged from 31 to 41% and from 42 to 54%, respectively and they were
mainly located at the level of the DCM (Peréz et al., 1997) In a comparative study of
the ciliates in the North and the South Aegean Sea, mixotrophs contributed to total
abundance from 17 to 24% in the South and from 21 to 54% in the North, and in
terms of integrated biomass the values varied from 13 to 27% and from 18 to 62% in10

the South and North, respectively (Pitta and Giannakourou, 2000). Mixotrophs were
dominated by distinct morphotypes as well. Cells smaller than 18 µm dominated in
the South Aegean, whereas in the North Aegean, receiving the outflow of the Black
Sea, the mixotrophic fauna was characterized by a relative abundance of cells of 18 to
50 µm size.15

Patterns of taxonomic diversity have been investigated with regard to tintinnid cil-
iates. Along a west-east Mediterranean Sea longitudinal transect sampled in June,
while the concentration of tintinnids varied little, their number of species and genera
as well as their diversity indices increased eastward. Diversity parameters correlated
positively with the DCM depths and negatively with the chl-a concentration. In a later20

study, the west-east variation of the tintinnid diversity was parallel to shifts in the chl-
a size-diversity estimate (Dolan et al., 2002). In contrast, Pitta et al. (2001) did not
observe any obvious west-east trend in tintinnid diversity but noted rather a peak in
species richness in central stations.

While the importance of microzooplankton (ciliates and dinoflagellates) is well es-25

tablished in marine ecosystems only one field study has provided estimates of ciliate
growth in the WMS (0.19–0.33 d−1, Peréz et al., 1997). To our knowledge there is
virtually no quantitative data on heterotrophic dinoflagellates for the open MS.
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5 Mesozooplankton

5.1 Standing stock

An overview of the distribution of mesozooplankton standing stock in epipelagic
Mediterranean waters highlights a general paucity in most regions, which reflects the
oligotrophic character of the basin (Fig. 16, Table 5). Superimposed to this overall pic-5

ture, a west-to-east decrease emerged from the surveys accross the basin conducted
in June and September 1999 (Dolan et al., 2002; Siokou-Frangou, 2004, Fig. 17), and
in June 2008 (Minutoli and Guglielmo, 2009). Sampling with finer mesh nets than the
standard 200 µm, or with large bottles, which has been rarely conducted in the open
MS, has revealed that biomass and abundance can increase by 2–20 fold when the10

smaller metazooplankters (∼50–200 µm) are considered, but they also highlight west-
east differences (Böttger-Schnack, 1997; Kršinic, 1998; Youssara and Gaudy, 2001;
Andersen et al., 2001; Zervoudaki et al., 2006; Alcaraz et al., 2007).

Mesozooplankton abundance and biomass display patterns at sub-basin scale that
roughly follow hydrological features, similarly to the distribution of primary producers,15

discussed in the previous sections. In the Alboran Sea, the sustained productivity
caused by processes linked to the Atlantic Water inflow results in high zooplankton dry
mass (18 mgm−3) and copepod abundance (up to 5000 ind. m−3) in the upper 200 m
of the Almeria-Oran frontal area (Seguin et al., 1994; Thibault et al., 1994). Interest-
ingly a great spatial variability of biomass values (5.5 to 25 mgm−3) was observed in20

this region among sites positioned within different water masses and hydrological fea-
tures and at a distance of 15–20 miles (Fig. 18). Increased mesozooplankton standing
stock values are associated with the fronts in the Balearic, Catalan, and Ligurian Seas
(Sabatés et al., 1989; Pinca and Dallot, 1995; Mc Gehee et al., 2004; Alcaraz et al.,
1994; Licandro and Icardi, 2009). The hydrographic features of the frontal system25

in the Catalan Sea determine not only the prevailing structural (e.g., biomass) and
metabolic (e.g., respiration, excretion) properties of zooplankton in the area but also
their variability in different seasons (Alcaraz et al., 2007). The zooplankton abundance
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in the Straits of Sicily seems to be enhanced by intermittent upwelling (Mazzocchi
et al., 1997). In the very oligotrophic EMS, the strong thermohaline front between
the inflowing modified Black Sea water and the Aegean Sea water harbors the high-
est mesozooplankton standing stock in the epipelagos (0–100 m) of the eastern basin
(up to 3875 ind. m−3 and 26.73 mgm−3 dry mass, Siokou-Frangou et al., 2009). The5

permanent or semi-permanent cyclonic gyres of the EMS (e.g., the Rhodos Gyre and
the gyre South-West of Crete Island) revealed higher mesozooplankton abundance
than the neighboring anticyclonic gyres (Mazzocchi et al., 1997; Christou et al., 1998;
Siokou-Frangou, 2004).

In the open MS, the bulk of epipelagic mesozooplankton is concentrated in the upper10

100 m layer and sharply decreases downward (Scotto di Carlo et al., 1984; Weikert and
Trinkaus, 1990; Mazzocchi et al., 1997). It is in this upper region of the epipelagic layer
that zooplankton play a major role in the biological processes, based on their linkage
with phyto- and microzooplankton in the euphotic layer (Longhurst and Harrison, 1989).
The generally decreasing vertical pattern of mesozooplankton abundance may be in-15

terrupted by small-scale increase at the level of the DCM, where high mesozooplankton
biomass can be associated with high diatom concentrations (Latasa et al., 1992), and
copepod feeding has been found to be enhanced (Saiz and Alcaraz, 1990). However,
studies are too scanty to allow for a clear appraisal of the role of mesozooplankton in
relation to DCM in the MS.20

In the annual cycle, offshore mesozooplankton oscillate within a narrow range
of abundances and reveal a seasonal variability that is modest in comparison to
coastal waters. Peaks occur in February–March and in May offshore Mallorca Island
(Fernández de Puelles et al., 2003), and in April in the Tyrrhenian Sea (Scotto di Carlo
et al., 1984). Notwithstanding differences in the amplitude, a synchronous timing of the25

annual cycle along coastal-offshore gradients is reported at different sites, for meso-
zooplankton communities (e.g., Fernández de Puelles et al., 2003) and some copepod
species, such as Temora stylifera and Centropages typicus (Di Capua and Mazzoc-
chi, 2004). With the caveat that most data are from neritic areas, the few copepod
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species investigated at basin scale, such as Calanus helgolandicus and C. typicus,
exhibit similar timing of seasonal cycle throughout the MS (Bonnet et al., 2005; Maz-
zocchi et al., 2007).

A time-series covering at monthly frequency a decade (1994–2003) offshore Mal-
lorca Island constitutes the single interannual study of mesozooplankton in the open5

MS. Copepod variability in the area was related to winter North Atlantic Oscillation and
the highest abundances coincided with the lowest NAO index in 1996 (Fernández de
Puelles et al., 2007).

5.2 Composition

Epipelagic mesozooplankton in the open MS are highly diversified in terms of taxo-10

nomic composition. However, their patterns of spatial and temporal distribution over
the annual scale reflect mainly the variability of copepods, which contribute as the ma-
jor group both in terms of abundance and biomass. The dominance of small copepods
(mostly ≤1mm in total length) in terms of both numbers and biomass represents the
major feature of the structure of mesozooplankton communities at basin level. In sam-15

ples collected with coarser mesh nets (333 µm), the 0.5–1 mm size fraction contributes
45–58% to the total mesozooplankton abundances in the open EMS (Koppelmann and
Weikert, 2007).

A few small-sized and specious genera of calanoids (Clausocalanus and Calo-
calanus, together with Ctenocalanus vanus) and cyclopoids (Oithona, oncaeids,20

corycaeids) account for the bulk of copepod abundance and biomass in epipelagic
layers of the MS (Seguin et al., 1994; Siokou-Frangou et al., 1997; Saiz et al., 1999;
Andersen et al., 2001; Youssara and Gaudy, 2001; Gaudy et al., 2003; Fernández de
Puelles et al., 2003; Mazzocchi et al., 2003; Riandey et al., 2005; Licandro and Icardi,
2009, Fig. 19). These copepods cover a wide range of diversity not only in terms of tax-25

onomy and morphology but also in life history traits and behaviour, which greatly affect
their modes of interacting with the surrounding environment, including their reactions
to the presence of prey and predators (Paffenhöfer, 1998). For example, Calocalanus
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and Ctenocalanus cruise slowly and create feeding currents, likely collecting more
efficiently non-moving phytoplankton cells, as reported for Paracalanus (Paffenhöfer,
1998), that has similar swimming behavior. In contrast, Clausocalanus moves con-
tinuously without creating feeding currents and it captures cells that enter a restricted
volume just in front of copepod’s head (Paffenhöfer, 1998; Mazzocchi and Paffenhöfer,5

1999; Uttieri et al., 2008). Oithonids stand still most of the time perceiving hydrome-
chanical signals from moving preys with their rich array of long setae (Paffenhöfer,
1998; Svensen and Kiørboe, 2000; Paffenhöfer and Mazzocchi, 2002). Oncaeids and
corycaeids swim primarily with a jerky forward motion (Hwang and Turner, 1995) and
have peculiar mouth appendages, that allows scraping food items within particle aggre-10

gates, such as discharged appendicularian houses and marine snow (Alldredge, 1976;
Ohtsuka et al., 1993). All these distinct behaviours point at different functional roles in
the epipelagos, with the occupation of distinct niches even in apparently homogeneous
open oligotrophic waters.

Further differences in ecological traits ad/or feeding habits are suggested by the dis-15

tinct although partially overlapping distributions of different congeneric species of the
above mentioned genera along the water column and/or over the seasons (Böttger-
Schnack, 1997; Fragopoulu et al., 2001; Kršinic and Grbec, 2002; Peralba and Maz-
zocchi, 2004; Zervoudaki et al., 2007; Peralba, 2008), as also observed in the tropical
Atlantic (e.g., Paffenhöfer and Mazzocchi, 2003). Although their populations largely20

overlap, the peaks of Clausocalanus paululus, C. pergens, C. arcuicornis and C. fur-
catus succeed each other from winter to autumn in the open Tyrrhenian Sea (Peralba
and Mazzocchi, 2004) as well as in the Ionian Sea and in the Straits of Sicily (Mazzoc-
chi, unpublished data), similarly to what observed in coastal waters (Mazzocchi and
Ribera d’Alcalá, 1995). In the Ionian and South Aegean seas, the dominant C. furca-25

tus and Oithona plumifera in the autumn are replaced by C. paululus and O. similis in
the spring (Siokou-Frangou et al., 1997; Mazzocchi et al., 2003; Siokou-Frangou et al.,
2004). In the eastern basin and in autumn, O. plumifera is abundant in the 0–50 m
layer whereas O. setigera dominates in the 50–100 m layer (Siokou-Frangou et al.,

11223

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/11187/2009/bgd-6-11187-2009-print.pdf
http://www.biogeosciences-discuss.net/6/11187/2009/bgd-6-11187-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
6, 11187–11293, 2009

Mediterranean
plankton

I. Siokou-Frangou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

1997). The comparison of individual activity and motion behavior between C. furcatus
and O. plumifera has revealed substantial differences in their sensory and feeding per-
formances, which apparently allow them to coexist (Paffenhöfer and Mazzocchi, 2002).
The overall picture emerging from the diversified characters of the small copepods, pre-
vailing in the open MS, indicates that they may exploit efficiently the whole spectrum of5

resources available in the epipelagos.
West-to-east differences in the community structure revealed by the percentage con-

tribution of some genera or species to total copepod numbers might reflect differences
in species biogeography and be also indicative of different trophic features and paths
in the systems. Centropages typicus is mentioned among the dominant species in10

the WMS (Pinca and Dallot, 1995; Saiz et al., 1999; Fernández de Puelles et al., 2003;
Gaudy et al., 2003), in the Adriatic Sea (Hure et al., 1980), and in the North Aegean Sea
(Siokou-Frangou et al., 2004, Fig. 19). By contrast, Calocalanus spp. (e.g., C. pavo, C.
pavoninus), oncaeids (e.g., Oncaea “media” group, O. mediterranea), corycaeids (e.g.,
Farranula rostrata), and Haloptilus longicornis contribute more to total copepod abun-15

dance in the eastern than in the western basin (Weikert and Trinkaus, 1990; Siokou-
Frangou et al., 1997; Mazzocchi et al., 2003; Ramfos et al., 2006).

The occurrence of large calanoids, such as Calanus helgolandicus, in the open MS
is much less important than in the North Atlantic (Bonnet et al., 2005, and references
therein). This species inhabits mainly intermediate and deep layers of the North-West20

MS, Adriatic Sea, and North Aegean Sea, and ascents to epipelagic waters in late
winter-spring (e.g., Bonnet et al., 2005; Siokou-Frangou, unpublished data). Its pres-
ence was extremely rare in the Levantine Sea until an outstanding abundance was
recorded in June 1993 (15.6×103 ind. m−2 in 4000 m water column), probably in rela-
tion to changes in the deep circulation induced by the Eastern Mediterranean Transient25

(Weikert et al., 2001). Seasonal and vertical patterns similar to those of C. helgolandi-
cus are reported for the large Subeucalanus monachus in the Alboran, Ionian and
Levantine seas (Weikert and Trinkaus, 1990; Siokou-Frangou et al., 1999; Andersen
et al., 2004). This suggests that these two large calanoids are vicariant species that
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can co-occur but peak in different areas of the MS. C. helgolandicus was found in high
density patches at the frontal zone in the open Ligurian Sea, in association with high
phytoplankton concentrations (Boucher, 1984). S. monachus was very abundant in the
Rhodos Gyre during the spring of 1992 when the upwelling of waters rich in nutrients
leaded to high phytoplankton biomass dominated by large diatoms (Siokou-Frangou5

et al., 1999). The other mesozooplankton groups that contribute to community diver-
sity in the open MS present much lower abundances than copepods (Gaudy, 1985).

Among crustaceans, cladocerans, which are a very abundant component of zoo-
plankton in coastal waters, expand their occurrence beyond the continental slope only
in narrow neritic areas at their maximum abundance observed in summer (Saiz et al.,10

1999; Riandey et al., 2005; Isari et al., 2006). In open waters of the Straits of Sicily
and the EMS during autumn, cladocerans accounted for only 0.3% of total zooplank-
ton with a scattered distribution among and within regions (Mazzocchi et al., 1997).
Interestingly in the South Aegean Sea, Evadne spinifera contributed 6% to mesozoo-
plankton abundance in September (Siokou-Frangou et al., 2004). Ostracods, which15

are not numerous in the mesozooplankton communities at temperate latitudes (Angel,
1993), increase gradually with depth. Their contribution to total zooplankton numbers
varies from ∼2% in the upper 50 m to ∼11% in the 200–300 m layer, and they present
a remarkably consistent distribution in different Mediterranean regions (Scotto di Carlo
et al., 1984; Mazzocchi et al., 1997; Isari et al., 2006). The ostracod highest abun-20

dances are recorded in the winter period in neritic waters, likely in relation to tempera-
ture conditions and the minimum abundance of the potential predators (Brautovic et al.,
2006).

Gelatinous zooplankton represent an important group of various organisms that play
different and relevant roles in the pelagic communities as efficient filter-feeders or vora-25

cious predators. However, they are generally underestimated because standard sam-
pling devices utilized for mesozooplankton damage or destroy their fragile bodies and
are therefore inappropriate for their quantitative estimation. The pelagic filter-feeder
tunicates, and especially salps, are known to occur in periodic dense swarms and
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sometimes outbreak for days to weeks (Bone, 1998; Ménard et al., 1994). It seems
however, that salps form smaller swarms in the MS than in other oceans, which could
be related to the oligotrophic nature of this sea (Andersen, 1998). Doliolids and salps
together accounted for 4% of total zooplankton abundance in the Catalan Sea in June
(Saiz et al., 1999) and only 0.04–1.3% in the EMS in October-November (Mazzoc-5

chi et al., 1997). However, doliolids made up to 9% of total zooplankton in the North
Aegean Sea in September (Isari et al., 2006). Appendicularians represent a more con-
stant component in open-waters zooplankton. Given their high population growth rate
under favourable conditions (Gorsky and Palazzoli, 1989), their abundances seem to
depend on the selected sampling area and time. Indeed, they accounted for 8% of10

abundances in spring in the open Catalan Sea (Saiz et al., 1999) and from 1 to 8% in
the Ionian Sea in spring 1992 and 1999 (Mazzocchi et al., 2003). The range of their
relative abundances was very wide among several regions of the eastern MS in the
autumn of 1991, from 1% in the West Levantine Sea up to 23% at a station in the Rho-
dos Gyre area (Mazzocchi et al., 1997). Among the highest contributions should be15

that recorded in the Ligurian Sea in December (38%) when Fritillaria was the dominant
genus (Licandro and Icardi, 2009).

Among the carnivorous gelatinous zooplankton, chaetognaths are more abundant
and contribute more than siphonophores (Mazzocchi et al., 1997; Isari et al., 2006),
but the latter group can easily be underestimated due to the net sampling that limits20

their accurate quantification (Lucic et al., 2005). In the EMS in autumn, the most abun-
dant chaetognaths are Sagitta enflata, S. bipunctata, S. minima and S. serratodentata
(Kehayias, 2003).

Mesozooplankton community structure in the open MS seems to be affected by
mesoscale circulation and hydrodynamic features similarly to what reported above for25

the standing stock. In the Alboran Sea, the copepods Centropages typicus and Clau-
socalanus furcatus revealed a preference for the frontal area (Youssara and Gaudy,
2001). In the North East Aegean frontal region, two distinct copepod assemblages in-
habit the areas occupied by the modified BSW and by the Aegean Water, respectively,
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due to the strong salinity differences (up to 8) (Zervoudaki et al., 2006; Siokou-Frangou
et al., 2009). An interesting aspect regarding the influence of mesoscale features is
revealed when studying simultaneously cyclonic and anticyclonic eddies. In the Al-
gerian basin, the eastern edge of an anticyclonic eddy seemed to be favorable for
Paracalanus/Clausocalanus, Calocalanus, and Calanus, due to the downward entrain-5

ment of chl-a down to 200 m. Chaetognaths were more abundant in the center of
the above structure. On the other hand, in the neighboring cyclonic eddy, the highest
abundance of filter-feeders (ostracods, cladocerans, doliolids and salps) was attributed
to enhanced trophic conditions (Riandey et al., 2005). Dissimilarities in copepod as-
semblages between cyclonic and anticyclonic gyres in the EMS in the autumn of 199110

were recorded only in the subsurface layer (50–100 m). The cyclonic gyres were char-
acterized by the copepods C. pergens and Ctenocalanus vanus, while the anticyclonic
ones were dominated by C. paululus, Mecynocera clausi and Lucicutia flavicornis; dif-
ferences were attributed to the higher chl-a values of the cyclonic gyres compared
to the anticyclonic ones (Siokou-Frangou et al., 1997). In the hydrodynamically very15

active area of the Ligurian Sea, zooplankton assemblages seem to be distinguished
due both to physical environment and animal behavior (Pinca and Dallot, 1995). In
the same area, high density spatial sampling revealed species-specific patterns in the
copepod spatial distribution. The copepods C. helgolandicus, C. typicus, Oithona spp.,
and Oncaea spp. were associated with the frontal zone; Acartia spp. and salps had20

a scattered distribution while Clausocalanus/Paracalanus did not show a clear pat-
tern. The cross-shore zooplankton distribution appeared strongly influenced by both
the Northern Ligurian current and the Ligurian front (Molinero et al., 2008).

5.3 Mesozooplankton production

Most studies on mesozooplankton production in the MS are limited to coastal species25

and sites and based mainly on the egg production method; their results are hardly
applicable to open water conditions, dominated by copepod species such as Clauso-
calanus, Oithona and Oncaeidae, whose reproductive biology is very poorly known.
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Data of mesozooplankton production in the open epipelagic MS are restricted in space
and time. In the Gulf of Lion, the Catalan Sea and the North-East Aegean Sea, which
are less oligotrophic regions within the MS, copepod production ranged from 19 to
58 mgCm−2d−1 over the seasons. The values are much lower in the North and South
Aegean Sea, in accordance with the remarkable oligotrophy of these areas (Table 6).5

For the egg-carrying Oithona and Oncaeidae, and the egg-carrying species belong-
ing to the genus Clausocalanus, only a few studies were conducted in the open MS
(Zervoudaki et al., 2007; Peralba, 2008). As the egg-carrying strategy implies lower egg
production but also lower egg mortality in comparison to egg broadcasting (Kiørboe
and Sabatini, 1995), these species can maintain quantitatively limited but persistent10

populations in a wide range of trophic conditions. Indeed the cosmopolitan and abun-
dant Oithona similis has very low and similar egg production rates (∼2eggsf−1d−1)
in the North Aegean Sea (Zervoudaki et al., 2007) and in the more eutrophic North
Atlantic Ocean (Castellani et al., 2005), without significant seasonal differences in both
seas. By contrast, for the broadcast-spawners C. typicus, Temora stylifera and Clau-15

socalanus lividus, egg production rates recorded in the Catalan Sea are lower than
the maximal rates reported for the same species in the literature. This indicates that
their production is limited by the oligotrophic conditions of the region (reviewed in Saiz
et al., 2007). Unfortunately, no information is available so far on the reproduction of the
Calocalanus, and a few data have been provided only recently for Ctenocalanus vanus20

in the Red Sea (Cornils et al., 2007).

5.4 Mesozooplankton and their prey

The horizontal patterns of mesozooplankton in the open MS are similar to those of
autotrophic biomass and production (e.g., the west-to-east decrease) and, to a less
extent, to those of microheterotrophs, suggesting a good coupling between mesozoo-25

plankters and their prey. This coupling was also observed at smaller scale in the frontal
areas of the Ligurian, Catalan and North Aegean Seas (Saiz et al., 1992; Alcaraz et al.,
1994; Pinca and Dallot, 1995; Alcaraz et al., 2007; Zervoudaki et al., 2007). However,

11228

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/11187/2009/bgd-6-11187-2009-print.pdf
http://www.biogeosciences-discuss.net/6/11187/2009/bgd-6-11187-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
6, 11187–11293, 2009

Mediterranean
plankton

I. Siokou-Frangou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

sometimes the areas of the maximum zooplankton abundance do not coincide with
those of the highest phytoplankton concentration (e.g., in the Catalan Sea, Calbet
et al., 1996), and the contrast might be attributed to factors other than nutrition such as
zooplankton mortality due to predation.

Only rarely have the natural diet and feeding performances been measured in the5

open MS. In situ measurements evidenced that mesozooplankton grazing impact on
phytoplankton could be significant. In the Gulf of Lion, the grazing impact of zooplank-
ton on primary production was estimated to be important both in winter (47%) and
spring (50%) (Gaudy et al., 2003). In the very oligotrophic South Aegean Sea, cope-
pod grazing impact on the primary production by cells >3µm was estimated to be 14%10

in March and 35% in September (Siokou-Frangou et al., 2002). The grazing impact
would be even higher had these estimates included copepod nauplii and the small
copepodites as well as groups with high growth rates such as appendicularians (Saiz
et al., 2007). In the North-East Aegean Sea, small copepods (Oncaea spp., small Clau-
socalanus species, Paracalanus parvus) showed a considerably higher grazing impact15

on phytoplankton production (almost 100% during September) as compared to larger
copepods (C. helgolandicus, C. typicus) (Zervoudaki et al., 2007). The above results
are in agreement with the statement by Calbet (2001) that in oligotrophic environments
zooplankton should exert a tighter control on autotrophs than in productive systems.
However, data available for the open MS are still too few to provide a conclusive evi-20

dence.
Despite the significant consumption of the autotrophic production by copepods, cili-

ates seem to be their preferable food items (Wiadnyana and Rassoulzadegan, 1989).
In different regions of the world oceans and in the coastal MS, copepods have been
reported to consume preferentially ciliates vs autotrophic food (reviewed by Calbet and25

Saiz, 2005). Indeed in the North-East Aegean Sea and in April, clearance rates of
some copepods (C. helgolandicus, C. typicus, P. parvus, O. similis, Oncaea spp.) were
one order of magnitude higher on ciliates than on chl-a-containing cells. Moreover,
copepods seemed to consume almost the entire ciliate production, but only part of
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the available primary production, suggesting that probably not all autotrophs provided
adequate food supply in terms of quality and/or size (Zervoudaki et al., 2007). This
prey preference of copepods could affect significantly ciliates abundances, exerting
a strong top down control of their populations. This control was hypothesized as the
major factor for the low standing stock of ciliates across the entire MS (Dolan et al.,5

1999; Pitta et al., 2001). The observed uncoupling between mesozooplankton and
microheterotroph standing stocks in the North Aegean Sea could be due to the same
factor (Pitta and Giannakourou, 2000).

Rare measurements of feeding rates seem to confirm the results of studies con-
ducted in the laboratory or in coastal areas, i.e., the ingestion rates depend on food10

quantity and quality. During the spring bloom in the Alboran Sea, copepod ingestion
rates on natural particle mixtures varied between 0.5 and 5.8×106µm3mg−1h−1, with
the highest values measured in the layer with chl-a maximum concentration (Gaudy
and Youssara, 2003). Copepod feeding can be selective even in presence of a more
homogeneous food assemblage; at DYFAMED site, copepod filtration rates rose from15

0.54 to 1.89 mlcopepod−1h−1 when diet switched from mixotrophic to heterotrophic
nanociliates (Peréz et al., 1997). Most of the in situ studies have provided evidence
that mesozooplankton feeding can change in relation to the type of food prevailing at
one time. Apart from the examples given above, in offshore waters of the Northwest
Mediterranean, communities dominated by the same four copepod genera (Clauso-20

calanus, Paracalanus, Oithona, and Centropages) fed on phytoplankton in June, when
cells >10µm occurred, while they relied on microzooplankton or detritus in October,
when small cells (<10µm) dominated, or under pronounced oligotrophic conditions
(Van Wambeke et al., 1996). In the Gulf of Lion, the mesozooplankton communities
were very similar in taxonomic composition during winter and spring, but differed in25

their feeding performances. In winter, the autotrophic food was sufficient to support
low zooplankton biomass, while heterotrophic food richer in protein sustained the en-
hanced secondary production in spring (Gaudy et al., 2003). A seasonal shift was also
observed in the Catalan Sea, where copepod species were strongly coupled with the
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autotrophic biomass in conditions of phytoplankton bloom (dominated by cells >5µm)
in March, and on heterotrophs in late spring and early summer where autotrophs abun-
dance was lower (Calbet et al., 2002).

These switches in feeding preferences and performances might result from a real
plasticity of a group/genus in response to different food conditions. However, it is also5

possible that this apparent flexibility masks neglected differences among congeneric
species that are very similar morphologically but have different needs for food quan-
tity and quality. This second case can be hypothesized for Clausocalanus pergens
and C. paululus by observing their distribution in different regions of the MS and the
Atlantic Ocean (Peralba, 2008). Both species are widespread in epipelagic waters of10

the open MS in late winter-spring, but the former prevails in presence of phytoplank-
ton blooms (e.g., in the North Balearic Sea) and the latter in oligotrophic regions (e.g.,
the Ionian Sea), suggesting a separation of their trophic niches (Peralba, 2008). Un-
fortunately, information on the natural diets of the dominant Clausocalanus, Oithona,
Oncaea species are almost lacking. Differences in the trophic regime seem to account15

for the variability of distribution and abundance of Centropages typicus in different re-
gions of the MS. This species is common and abundant in coastal and neritic areas,
while in open waters it contributes significantly to copepod assemblages only during
spring bloom conditions, i.e., in the Gulf of Lion, Ligurian Sea, and North Aegean Sea
(Andersen et al., 2001; Calbet et al., 2007; Siokou-Frangou et al., 2004). This dis-20

tribution indicates a relatively modest adaptability of C. typicus to fluctuations in food
availability (Calbet et al., 2007), despite its capacity of feeding on a wide spectrum of
prey types.

Given the oligotrophic status of the MS, prey availability could affect mesozooplank-
ton. Food limitation was suggested to occur in the Catalan Sea, since mesozoooplank-25

ton ingestion rates were correlated with food availability but were lower than in exper-
imental studies (Saiz et al., 2007). Similarly, in the North-East Aegean Sea, the chl-a
concentration in spring and early autumn was well below the saturation level of cope-
pod clearance, indicating that the animal growth was probably food limited or that they
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were feeding on heterotrops (Zervoudaki et al., 2007). In addition, food limitation could
lead to competition among mesozooplankters in the open MS. However, the possibility
to exploit different food sources may allow the co-occurrence of various and numerous
taxa, as suggested by experiments conducted with doliolids and small copepods in the
coastal Catalan Sea (Katechakis et al., 2004). Experiments providing information on5

the grazing impact of other mesozooplankton groups (e.g., appendicularians, doliolids,
salps, ostracods) on autotrophs and microheterotrophs are lacking for the open MS.
As for the rare studies on the feeding impact of carnivorous zooplankton, the predation
pressure exerted by chaetognaths on copepod standing stocks appears overall negli-
gible in the Catalan Sea (<1%, Durò and Saiz, 2000), whereas it varied from 0.3–7.8%10

in several areas of the eastern MS (Kehayias, 2003).

6 Planktonic food webs in the Mediterranean epipelagos

After the first report of a food web dominated by small-sized plankton in the Ligurian
Sea (Hagström et al., 1988; Dolan et al., 1995) several studies showed that the micro-
bial food web is dominant in large parts of the oligotrophic MS (Christaki et al., 1996;15

Thingstad and Rassoulzadegan, 1995; Turley et al., 2000; Siokou-Frangou et al., 2002,
among the others).

The widespread P deficit of the Mediterranean waters led Thingstad et al. (2005) to
investigate on how P limitation could shape microbial food web and influence carbon
flow in the very oligotrophic Levantine Sea. The fast transfer of the added P to the20

particulate form, along with an unexpected slight decrease in chl-a, led the authors to
postulate two possible scenarios: i) the relaxation of P limitation due to the P addition
was exploited only by bacteria, which could utilize DON as source of nitrogen, thus
outcompeting N limited autotrophs. The heterotrophic biomass would then have been
quickly channeled toward larger consumers, mesozooplankton included, with a sharp25

increase in copepod egg production (bypass hypothesis). ii) The relaxation of P limita-
tion produced a “luxurious” accumulation of P in both bacteria and picophytoplankton
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(presumably less in the latter) with a P enriched diet for grazers, which stimulated
the observed increase in egg production (tunneling hypothesis). In either scenario
emerges a community which would not always manifest its response to nutrient inputs
as autotrophic biomass accumulation, especially when the input is biased towards one
or the other element. The latter is confirmed by Volpe et al. (2009) after an in depth5

analysis of color remote sensing images of phytoplankton response to dust storms on
the whole basin. Further, this strongly supports the view that the planktonic web in that
region is tightly controlled by the heterotrophic component.

The leading role of heterotrophs, in the MS, as it emerges from a plankton standing
stock prevalently heterotrophic and dominated by microbes, is the dominant situation10

in the basin. Heterotrophic/autotrophic biomass ratios vary from 0.5 to 3.0 in the west
MS (Christaki et al., 1996; Gasol et al., 1998; Pedrós-Alió et al., 1999) and from 0.9
to 3.9 in the Aegean Sea, with higher values more frequently found in the oligotrophic
regions and during the stratified period (Siokou-Frangou et al., 2002). The spatial trend
is consistent with this pattern, with ratios increasing along a longitudinal transect from15

the Balearic Sea to the East Levantine Sea (Christaki et al., 2002). As a result, the
distribution of biomass among the food web compartments would be represented by
an “inverted pyramid” or “squared inverted pyramid”, as it was depicted in the Aegean
Sea (Siokou-Frangou et al., 2002), a picture common in oligotrophic oceanic waters
(Gasol et al., 1997).20

The above outlook suggests two different scenarios for the Mediterranean epipelagic
food webs: i) the system is net heterotrophic, with a dominance of heterotrophic bac-
teria and protists not only in biomass but also in rates. Bacteria would outcompete
autotrophs in P uptake and bypass the autotrophic link, relying on allochthonous C
(Sects. 2 and 3.1), which would be used with more or less efficiency, according to25

the season, area etc. ii) the system is in balance between production and consump-
tion and the “inverted pyramid” may reflect either seasonally biased sampling, (for in-
stance Casotti et al. (2003) reported a higher biomass of autotrophs than that of mi-
croheterotrophs in the central Ionian sea in spring), and/or higher turnover rates in
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autotrophs than in heterotrophs. The latter would be in contrast with the conceptual
representation by Thingstad and Rassoulzadegan (1995) and with several observa-
tions in the basin (Sect. 4).

Despite the dominance of the microbes and picoautotrophs in the MS offshore wa-
ters, prevalence of nano- and micro-autotrophs has been observed after intermittent5

nutrient pulses in highly dynamic mesoscale physical structures and frontal areas, as
well as in areas being in contact with extended and at times highly productive coastal
systems (Adriatic and North Aegean seas) (Sect. 2). Such pulses are spatially lim-
ited and concentrated, in contrast to the nutrient inputs deriving from the atmosphere,
which are spread over large spaces and diluted. Because of the pulses intermittency,10

their impact is likely underestimated. They determine a considerable variability of the
food web structure along trophic gradients, which change not only in space but also
in time, going from marked oligotrophy (recycling systems) to new production systems
(Legendre and Rassoulzadegan, 1995). In the Ligurian Sea, the deep vertical mixing
induced by strong winds during May 1995 resulted in high primary production domi-15

nated by diatoms and in increased copepod abundance compared with the followed
stratification period-early June 1995 (Andersen et al., 2001).

The central divergence of the Northwest MS is another area of enhancement of the
classical food web activity (Calbet et al., 1996) providing food to the higher trophic
levels, from zooplankton (Pinca and Dallot, 1995) up to large mammals (Forcada et al.,20

1996).
New production occurs also at the DCM (with frequent presence of diatoms) close

to the nutricline over a broader time interval, but its overall weight on the production of
the basin is poorly constrained. If DCM hosts a significantly different planktonic web is
still an open question (e.g. Estrada et al., 1999).25

A first order picture would then be that microbial food web is the prevailing way of
functioning of the MS offshore waters, with few exceptions where larger, bloom form-
ing phytoplankton would initiate the “classical” food web. However this simplification
is becoming less and less robust with new findings on nutritional potential of marine
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organisms. What were considered as heterotrophic bacteria when estimated with nor-
mal counts, turned out to include groups capable of diversified metabolic strategies
(Moran and Miller, 2007; Van Mooy and Devol, 2008; Zubkov and Tarran, 2008) and the
MS should not be different in this respect. Flagellates, ciliates and dinoflagellates are
mixotrophic (Sects. 3 and 4) and their contribution is significant in the EMS (Sect. 4).5

Metazoans display also a wide range of feeding modes and food preferences. Among
copepods, the genera more abundant in the MS are known to exploit a large variety of
food resources, including fecal pellets (e.g., Oithona, González and Smetacek, 1994;
Svensen and Nejstgaard, 2003) and marine snow (e.g., oncaeids, Alldredge, 1976;
Ohtsuka et al., 1993). Appendicularians, which are capable to feed on pico- and small10

nanoplankton (Deibel and Lee, 1992), constitute a by-pass from the lower trophic lev-
els to fishes (Deibel and Lee, 1992), contributing to a more efficient food web as that
described in the oligotrophic North Aegean Sea (Siokou-Frangou et al., 2002).

The variable grazing impact on larger than 5 µm primary producers by mesozoo-
plankton, despite the prevalence of ciliates as their food items, both during mixing and15

stratified seasons (Sect. 5) indicate in MS a flexible and possibly efficient connection
between both autotrophs and microheterotrophs and the higher trophic levels. All this
suggests that in the MS is characterized by a “multivorous food web” (sensu Legendre
and Rassoulzadegan, 1995), including a continuum of trophic pathways spanning from
the herbivorous food web to the microbial loop and dynamically expanding or contract-20

ing along with seasons, areas and transient processes. The high diversity in species,
feeding and reproduction modes, and consequently in functional roles, might support
a more efficient energy transfer to the higher trophic levels.

Most of the studies describing phytoplankton biomass dynamics in the MS (Sect. 3)
have stressed the bottom up constraints to phytoplankton growth and accumulation to25

justify the generally low standing stocks of autotrophs. On the other hand Thingstad
et al. (2005) have shown that purely heterotrophic processes may produce, even in the
extreme oligotrophy of the EMS, a rapid transfer to higher levels, which suggests an
efficient top-dow control.
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We are then confronted with two possible depictions: i) the low standing stocks of
autotrophs due to low dissolved nutrients testifies a strong oligotrophy that determines
a low standing stock also of intermediate and top predators (bottom-up control); ii) the
low standing stock of autotrophs could instead result from a very effective top down
control that propagates along the food web, ultimately reaching the top predators (see5

Sects. 4 and 5). In this latter case the stock of grazers would be larger, and fishery
richer than expected on the sole basis of measured chl-and nutrients concentrations,
generating the so called Mediterranean paradox (Sournia, 1973; Estrada, 1996). We
can thus hypothesize that the intricate and very flexible food web (e.g. Paffenhöfer et al.,
2007) helps in keeping at a minimum the carbon loss versus deeper layers (POC export10

is very low in the MS, e.g., Wassmann et al., 2000; Boldrin et al., 2002 and references
therein) and predators could optimally profit of carbon produced and transformed within
the system, thus being the ultimate controllers of plankton abundance in the MS. The
paradox would become even less paradoxical if one takes into account the external
inputs to the basin, which would reinforce the view of the MS as a coastal ocean.15

7 Perspectives

Despite the numerous investigations of the last decades, the emerging picture of plank-
ton dynamics in the MS is far from being satisfying, neither at the spatial nor at the
temporal scales. Except for the satellite images, some areas, especially in the south-
ern part of both basins, are still insufficiently known. The temporal variability at short,20

seasonal and interannual scale also calls for more intensive sampling: in addition to
the DYFAMED site, other long term offshore stations should be initiated in key geo-
graphical locations to investigate seasonal patterns, fluxes of the major components,
and responses of the planktonic biota to anthropogenic and climatic changes.

Not all the components of the pelagic system have been addressed with compara-25

ble efforts, also because of the lack of appropriate sampling and identification tools.
The diversity and distribution patterns of autotrophic and heterotrophic prokaryotes,
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viruses, and eukaryotes which are the major component of the MS epipelagos are still
largely underestimated. The few molecular studies realised since the late 90s have
shown their great potential in advancing our knowledge on the microbial component
of the sea. Different communities likely characterize the spatial and temporal texture
of this diversified basin, playing distinct roles in terms of energy transfer and food web5

structure. The proper identification of their components is a prerequisite for our under-
standing of the functioning of the Mediterranean pelagic realm.

The intriguing picture of heterogeneity emerging from this review points at a dif-
ference between the pelagic Mediterranean and other oceanic sites, which might be
explained considering the small scale and the enclosed nature of this basin. This10

“miniature ocean” surrounded by populated coasts, hosting a surprising and still largely
underestimated variety of planktonic organisms linked together by dynamic and plastic
trophic pathways is an intruiguing system. The relatively close proximity with land in-
tensifies the effect of climatic changes and anthropic-driven impacts such as increased
nutrient fluxes and/or overfishing might affect the biological structure of the basin at15

a more rapid scale as compared to the large oceans, and strongly support the role of
Mediterranean as a sensitive sentinel for future changes. The question is: which sig-
nals the sentinel will send? From our survey we speculate that in such a flexible biome,
signals will first manifest as spatial reorganization of communities.

In fact the scales are much smaller than oceanic regions at similar latitudes, which20

makes the regions of MS highly flexible in shifting from one regime to another, since
all the “actors” are already there. The MS offers then an attractive marine environment
to study general ubiquitous processes across multiscale and multidirectional physical,
biological and trophic gradients. In some areas, many pieces of this multidimensional
puzzle are already in place, meaning that new research efforts can grow on some25

already existing ground and that the relevance of new results can be amplified in the
frame of old data.

In general, basic exploratory research is still needed, while gaps in knowledge should
be filled taking advantage of modern technologies and new approaches. Among these,
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a great opportunity is represented by a clever merge of modern oceanographic tools
such as Autonomous Systems and the sophisticated methods of the “omics”, whose
results may feed tentative integrated conceptual models of the system dynamics to
approach a broad range of marine environmental issues such as fisheries, climate
change impact, harmful blooms, emerging diseases and pollution. All those could5

be more easily verified due to the scales and accessibility, and their inferences later
extended to other less tractable marine systems.
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Procès-Verbaux des Réunions – Commission Internationale pour l’Exploration Scientifique
de la Mer Méditerranée, 17(2), 511–512, 1963. 11218

Margalef, R.: Composición especı́fica del fitoplancton de la costa catalano-levantina
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spatial variations in the nutrient limitation of bacterioplankton growth in the northwestern
Mediterranean, Aquat. Microb. Ecol., 27, 47–56, 2002. 11215

Sandroni, V., Raimbault, P., Migon, C., Garcia, N., and Gouze, E.: Dry atmospheric deposi-
tion and diazotrophy as sources of new nitrogen to northwestern Mediterranean oligotrophic5

surface waters, Deep-Sea Res. I, 54, 1859–1870, 2007. 11194
Schauer, M., Massana, R., and Pedròs-Aliò, C.: Spatial differences in bacterioplankton com-

position along the Catalan coast (NW Mediterranean) assessed by molecular fingerprinting,
FEMS Microbiol. Ecol., 33, 51–59, 2000. 11216
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Thibault, D., Gaudy, R., and Le Fèvre, J.: Zooplankton biomass, feeding and metabolism in a
geostrophic frontal area (Almeria-Oran front, western Mediterranean). Significance to pelagic15

food webs, J. Mar. Syst., 5, 297–311, 1994. 11220, 11273
Thingstad, F. T.: A theoretical approach to structuring mechanisms in the pelagic food web,

Hydrobiologia, 363, 59–72, 1998. 11191
Thingstad, F. T. and Rassoulzadegan, F.: Nutrient limitations, microbial food webs, and “biolog-

ical C-pumps”: Suggested interactions in a P-limited Mediterranean, Mar. Ecol. Prog. Ser.,20

117, 299–306, 1995. 11189, 11212, 11216, 11232, 11234
Thingstad, F. T. and Rassoulzadegan, F.: Conceptual models for the biogeochemical role of the

photic zone microbial food web, with particular reference to the Mediterranean Sea, Prog.
Oceanogr., 44, 271–286, 1999. 11189, 11190, 11212

Thingstad, F. T., Krom, M. D., Mantoura, R., Flaten, G., Groom, S., Herut, B., Kress, N., Law, C.,25

Pasternak, A., Pitta, P., Psarra, S., Rassoulzadegan, F., Tanaka, T., Tselepides, A., Wass-
mann, P., Woodward, E., Wexels, Riser, C., Zodiatis, G., and Zohary, T.: Nature of phos-
phorus limitation in the ultraoligotrophic Eastern Mediterranean, Science, 309, 1068–1071,
2005. 11190, 11215, 11232, 11235

Totti, C., Civitarese, G., Acri, F., Barletta, D., Candelari, G., Paschini, E., and Solazzi, A.: Sea-30

sonal variability of phytoplankton populations in the middle Adriatic sub-basin, J. Plankton
Res., 22, 1735–1756, 2000. 11206, 11211

11263

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/6/11187/2009/bgd-6-11187-2009-print.pdf
http://www.biogeosciences-discuss.net/6/11187/2009/bgd-6-11187-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
6, 11187–11293, 2009

Mediterranean
plankton

I. Siokou-Frangou et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Totti, C., Ghetti, A., Pariante, R., and Hopkins, T.: Biological coherence in the Western Adriatic
Coastal Current: phytoplankton assemblages, in: The Adriatic Sea (EUR 18834), edited by:
Hopkins, T., Artegiani, A., Cauwet, G., Degobbis, D., and Malej., A., Ecosystems Research
Report, vol. 32, 385–400, Portonovo (Ancona), Italy, 1999. 11205, 11207

Travers, M.: Le microplancton du golfe de Marseille: variations de la composition systématique5
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Tunin-Ley, A., Ibañez, F., Labat, J.-P., Zingone, A., and Lemée, R.: Phytoplankton biodiversity

and NW Mediterranean Sea warming: changes in the dinoflagellate genus Ceratium in the10

20th century, Mar. Ecol.-Prog. Ser., 541, 101–112, 2009. 11211
Tunin-Ley, A., Labat, J.-P., Gasparini, S., Mousseau, L., and Lemee, R.: Annual cycle and

diversity of species and infraspecific taxa of Ceratium (Dinophyceae) in the Ligurian Sea,
northwest Mediterranean, J. Phycol., 43, 1149–1163, doi:10.1111/j.1529-8817.2007.00417.
x, 2007. 1121115

Turley, C., Bianchi, M., Christaki, U., Conan, P., Harris, J. R. W., Psarra, S., Ruddy, G., Stutt,
E., Tselepides, A., and Van, Wambeke, F.: Relationship between primary producers and
bacteria in an oligotrophic sea-the Mediterranean and biogeochemical implications, Mar.
Ecol.-Prog. Ser., 193, 11–18, 2000. 11214, 11232, 11271
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Table 1. Values of primary production reported for the MS.

Area Period mgCm−2d−1 g C m−2y−1 mgCm−2h−1 Reference comments

MS 1979–1983 156 Antoine et al. (1995)a Satellite data
MS 1997–1998 154–198 Bricaud et al. (2002) Satellite data
MS 1998–2001 130–140 Bosc et al. (2004) Satellite data

MS 80–90 Sournia (1973) in situ 14C

Whole basin May–June 1996 168–221 Moutin and Raimbault (2002) in situ 14C
EMS 1979–1983 137 Antoine et al. (1995)a Satellite data
EMS 1997–1998 143-183 Bricaud et al. (2002) Satellite data
EMS 1998–2001 121±5 Bosc et al. (2004) Satellite data
EMS 137–150 Bethoux et al. (1998) Budget analysis

EMS 20.3 Dugdale and Wilkerson (1988) in situ 14C

EMS May–June 1996 99 Moutin and Raimbault (2002) in situ 14C

South Adriatic 1997–1999 97.3 Boldrin et al. (2002) in situ 14C

South Adriatic March (avg 1997/99) 297±56 Bianchi et al. (1999) in in situ 14C
Boldrin et al. (2002)

Ionian Sea August (avg 1997/98) 18±65 Bianchi et al. (1999) in in situ 14C
Boldrin et al. (2002)

Ionian Sea 1997–1999 61.8 Boldrin et al. (2002) in situ 14C

Ionian Sea May–June 1996 119–419 (315±71) Moutin and Raimbault (2002) in situ 14C

Ionian Sea April–May 1999 208–324.5 Casotti et al. (2003) in situ 14C

Strait of Sicily May–June 1996 419 Moutin and Raimbault (2002) in situ 14C

North Aegean March 1997/98, 3.4 56.49–149.55 Ignatiades et al. (2002) in situ 14C
September1997

North Aegean September 1998 43.8 Ignatiades et al. (2002) in situ 14C

North Aegean September 1999 232±45 (no-front) Zervoudaki et al. (2007) in situ 14C
326±97 (front)

North Aegean April 2000 256±62 (no-front) Zervoudaki et al. (2007) in situ 14C
245±27 (front)

South Aegean March 1997/98, 38.88 33–56.21 Ignatiades et al. (2002) in situ 14C
September 1997

Cretan Sea 1994–1995 59 Psarra et al. (2000) in situ 14C

Cretan Sea 1994 (four easons) 24.79 5.66 Ignatiades (1998) in situ 14C (0–50 m)

Cretan sea March 1994 6.56 (5.73-7.98) Gotsis-Skretas et al. (1999) in situ 14C (0–50 m)

Cyprus eddy May 2002 0.091±0.014 mgC m−3 h−1 Psarra et al. (2005) in situ 14C

Cyprus eddy May 2001–2002 (all depths) 1.8–12.5 nmolCl−1h−1 Tanaka et al. (2007) in situ 14C

Cyprus eddy May 2001–2002 (0–20 m) 8.5–11.5 nmolCl−1h−1 Tanaka et al. (2007) in situ 14C

MS May–June 1996 168–221 Moutin and Raimbault (2002) in situ 14C
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Table 1. Continued.

Area Period mgCm−2d−1 g C m−2y−1 mgCm−2h−1 Reference comments

WMS 1979–1983 197 Morel and André (1991), Satellite data
Antoine et al. (1995)a

WMS 1997–1998 173–198 Bricaud et al. (2002) Satellite data
WMS 105.8–119.6 Bethoux et al. (1998) Oxygen

consumption

WMS May–June 1996 145 Moutin and Raimbault (2002) in situ 14C

WMS May–June 1996 353–996 Moutin and Raimbault (2002) in situ 14C

Alboran Sea May 1986 (non front) 330–600 (avg. 480) Lohrenz et al. (1988) in situ 14C

Alboran Sea May 1986 (front) 500–1300 (avg. 880) Lohrenz et al. (1988) in situ 14C

Alboran Sea May 1988 632, 388 and 330 Moran and Estrada (2001) in situ 14C

Alboran Sea November 2003 6.15–643.88 (avg.142.38) Macı́as et al. (2009) in situ 14C

Catalan-Balearic May–July 1982–1987 160–760 Estrada et al. (1993) in situ 14C

Catalan-Balearic April 1991 150–900 Granata et al. (2004) in situ 14C

Catalan-Balearic June 1993 450,700 Granata et al. (2004) in situ 14C

Catalan-Balearic October 1992 210,250 Granata et al. (2004) in situ 14C

Catalan Balearic March 1999 1000±471 (max 1700) Moran and Estrada (2001) in situ 14C

Catalan Balearic January–February 2000 404±248 (max 1000) Moran and Estrada (2005) in situ 14C

Algerian Basin October 1996 186–636 (avg. 440) Moran et al. (2001) in situ 14C

Gulf of Lion March–April 1998 401 Gaudy et al. (2003) in situ 14C

Gulf of Lion January–February 1999 166 Gaudy et al. (2003) in situ 14C
South Gulf of Lion 78–106 Lefevre et al. (1997) Review

South Gulf of Lion 140–150 Conan et al. (1998) in situ 14C

Tyrrhenian Sea May–June 1996 398 Moutin and Raimbault (2002) in situ 14C

Tyrrhenian Sea July 2005 273 Decembrini et al. (2009) in situ 14C

Tyrrhenian Sea December 2005 429 Decembrini et al. (2009) in situ 14C

Ligurian Sea (DYFAMED) 1993–1999 86–232 (avg. 156) Marty and Chiaverini (2002) in situ 14C

Ligurian Sea (DYFAMED) May 1995 240–716 mgCm−2 (14h)−1 Vidussi et al. (2000) in situ 14C

a corrected following Morel et al. (1996).
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Table 2. Site, sampling data depths and variables measured and source of the studies con-
sidered in this review. S: surface, INT: integrate data, chl-a: chl-a concentration, BA: bacterial
abundance, VA: Viral abundance, BP: bacterial production, VBR: ratio of viral abundance re-
spect to bacterial abundance, VBM: viral mortality on bacteria, n: number of data.

Location Date Depth n Variables References
(m)

West

NW Mediterranean June 1995 5–200 (S, INT) 42 chl-a, BA, VA, VBM, VBR Guixa-Boixereu et al. (1999b)

NW Mediterranean June 1999 5–200 (S, INT) 6 BA, VA, VBM, VBR Weinbauer et al. (2003)

Alboran Sea October and November 2004 1–200 (S, INT) 6 BA, VA, BP, VBR Magagnini et al. (2007)

W Mediterranean October and November 2004 1–200 (S, INT) 16 BA, VA, BP, VBR Magagnini et al. (2007)

Thyrrenean Sea October and November 2004 1–200 (S, INT) 11 BA, VA, BP, VBR Magagnini et al. (2007)

Straits of Sicily October and November 2004 1–200 (S, INT) 15 BA, VA, BP, VBR Magagnini et al. (2007)

East

Adriatic Sea May 91–November 1992 0,5 (S) chl-a, BA, VA, VBR Weinbauer et al. (1993)
January–February 2001 1–1200 (S) 6 BA, VA, BP, VBR Corinaldesi et al. (2003)
April–May 2003 (S) BA, VA, BP, VBR Bongiorni et al. (2005)

Ionian Sea October and November 2004 1–200 (S, INT) 19 BA, VA, BP, VBR Magagnini et al. (2007)
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Table 3. Number (n) of data used to find out the relationships between different variables in
the Western Mediterranean (W-Med) and the Eastern Mediterranean (E-Med). BA: bacterial
abundance; BP: Bacterial production; VA: viral abundance; PP: primary production; HNF: het-
erotrophic nanoflagellates abundance; Cil: ciliate abundances; Chl: chl-a concentration.

Variables W-Med E-Med Source
(n) (n)

BA-VA 42 0 Guixa-Boixereu et al. (1999a)
38 19 Magagnini et al. (2007)

0 6 Weinbauer et al. (1993),
Corinaldesi et al. (2003)
Bongiorni et al. (2005)

10 0 Weinbauer et al. (1993)

BA-BP 0 174 Christaki et al. (2003)
8 0 Vaqué et al. (2001)
0 13 Robarts et al. (1996)

13 18 Van Wambeke et al. (2002)
26 50 Christaki et al. (2001)

0 91 Van Wambeke et al. (2000)

BP-PP 48 29 Turley et al. (2000)
22 24 Christaki et al. (2002)
26 0 Pedrós-Alió et al. (1999)

HNF-BA 12 0 Christaki et al. (1996),
Christaki et al. (1998)

36 45 Christaki et al. (2001)
8 0 Vaqué et al. (2001)
0 48 Siokou-Frangou et al. (2002)

Cil-Chl 20 42 Pitta et al. (2001)
8 0 Vaqué et al. (2001)

79 0 Dolan and Marrasé (1995)
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Table 4. Bacterial (BA), Heterotrophic Nanoflagellate (HNF) abundance and Bacterial Produc-
tion (BP) in different areas of the basin (BP units are those reported by the authors).

Period Location BA (cells108 l−1) BP* HNF (cells106 l−1) Reference
% BP consumption

West

May Almeria-Oran front 2.3–13.5 0.04–3.26 µgCl−1d−1 Fernàndez et al. (1994)
front (Alboran Sea) 124–199 mgCm−2d−1 (150 m)

May and June NW Mediterranean 3.6–9.6 1.2–7.2 µgCl−1d−1 (5 and 40 m) 0.8–2.2 Christaki et al. (1996, 1998)
current 1.0–2.1 pmolTdRl−1h−1

June Barcelona: 1.5–6.0 0.5–3.0 pmolTdRl−1h−1 Gasol et al. (1998)
In-Offshore transect 20–360 mgCm−2d−1 (60–80 m)

Stratification Barcelona 3.1–5.4 0.02–2.5 µgCl−1d−1 Pedrós-Alió et al. (1999)
period (3 yr) Balearic islands 1–104 mgCm−2d−1 (0–200 m)

October Algerian current 6.6–9.0 0.3–4.5 µgCl−1d−1 Moran et al. (2001)
33–384 mgCm−2d−1 (120 m)

March NW Mediterranean: 1.5–8.9 0.09–5.9 µgCl−1d−1 0.3–3.0 Vaqué et al. (2001)
transects off-shore (HDNA 25-87%)

Monthly NW Mediterranean: 1.4–11.0 n.d.–4.8 µgCl−1d−1 Lemée et al. (2002)
(one year) station off-Nice 60–468 mgCm−2d−1 (130 m)

November, Almeria-Oran front 5.0–15.0 0.1–5.5 µgCl−1d−1 Van Wambeke et al. (2004)
January (Alboran Sea) 68–215 mgCm−2d−1 (200 m) Atl.jet

52–70 mgCm−2d−1 (200 m) Med water

East

September Cyprus eddy 2.8–4.9 0.2–0.4 pmolTdRl−1h−1 0.4–0.9
core and boundary 0.2–0.48 106cellsl−1h−1 Zohary and Robarts (1992)

October–November Levantine basin 0.4–3.9 0.04–0.2 µgCl−1d−1 Robarts et al. (1996)
0–3.9, avg: 0.3 pmolTdRl−1h−1

8–43, avg 24 mgCm−2d−1 (200 m)

March Cyprus eddy 2.5–3.5 0.0–0.2 average 0.1 pmolTdRl−1h−1 Zohary et al. (1998)

September, S.Aegean Sea 3.0–5.0 0.45–1.96 µgCl−1d−1 Van Wambeke et al. (2000)
March (transect off-shore) 7–131, avg 45 mgCm−2d−1 (100 m)

September, North and South 2.3–15.2 0.22–0.94 µgCl−1d−1 0.3–3.1 Christaki et al. (2003),
March Aegean 48–110 mgCm−2d−1 (10 m) 35–100% Siokou-Frangou et al. (2002)

June–July east-west transect 2.9–5.0 0.0048–1.3 µgCl−1d−1 0.5–1.2 Christaki et al. (2001),
13–75 mgCm−2d−1 (200 m) 45–85% Van Wambeke et al. (2002)
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Table 5. Mean values (range) of mesozooplankton biomass (as dry weight or organic C) in
different areas of the Mediterranean Sea.

Area Sampling period Net mesh size Layer Biomass (mgm−3) Reference

Alboran Sea Winter 1997 200 µm 0–200 m 14.44 (5.5–25) Youssara and Gaudy (2001)

Alboran Sea April–May 1991 200 µm 0–200 m 10.13 (3.6–18.3) Thibault et al. (1994)

Algerian Basin July–August 1997 200 µm 0–200 m 8.2 (2.1–34.5) Riandey et al. (2005)

Catalan Sea Autumn 1992 200 µm 0–200 m 2.9 (2.2–3.4)b Calbet et al. (1996)

Catalan Sea June 1993 200 µm 0–200 m 5.8 (4.8–8)b Calbet et al. (1996)

Catalan Sea Annual mean 200 µma 0–200 m 7.95b Alcaraz et al. (2007)

N Balearic Sea March 2003 200 µm 0–200 m 8.4 (0.4–17.8) Mazzocchi, unpublished data
April 2003 5.9 (2.0–13.2)

Gulf of Lion Spring 1998 200 µm 0–200 m 8.73 (3–13.5) Gaudy et al. (2003)
E Ligurian Sea December 1990 200 µm

Tyrrhenian Sea Autumn 1986 200 µm 0–50 m (3.6–32) (AFDW) Licandro and Icardi (2009)
N Ionian Sea Spring 1999 200 µm 0–100 m 7.9 (4.4–13.4) Fonda Umani and de Olazàbal (1988)

2.1 (1.1–3.8) Mazzocchi et al. (2003)

S Adriatic Sea April 1990 No info 0–50 m (0.1–7.4) (AFDW) Fonda Umani (1996)

N Aegean Sea March 1997 200 µm 0–200 m 8 (5.5–13.3) Siokou-Frangou, unpublished data

S Aegean Sea March 1997 200 µm 0–200 m 4 (2.5–5.1) Siokou-Frangou, unpublished data

a collection by bottles and filtering through 200 µm mesh size netting,
b organic C measured with CHN analyzer.
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Table 6. Mean values (range) of egg production rates (EPR) and estimated copepod (CP) or
mesozooplankton (MZP) production in areas of the Mediterranean Sea.

Area Period Species EPR (eggsf−1d−1) Production (mgCm−2d−1) Reference

Gulf of Lion Winter 1999 19 (MZP) Gaudy (1985)
Spring 1998 54 (MZP)

Catalan sea March 1999 C. typicus 105 Calbet et al. (2002)
A. clausi 15
C. lividus 14

Catalan Sea June 1995 C. typicus 5 Saiz et al. (1999)
T. stylifera 7
C. lividus 4

Catalan Sea Annual mean (20–40) (MZP) Saiz et al. (2007)

Adriatic Sea Annually (0.6–3) (MZP) Fonda Umani (1996)

N Aegean Sea March 1997 5 (CP) Siokou-Frangou et al. (2002)
Sept 1997 15 (CP)

NE Aegean Sea March 1997 41 (CP) Siokou-Frangou et al. (2002)
Sept 1997 58 (CP)

S Aegean Sea March 1997 5 (CP) Siokou-Frangou et al. (2002)
Sept 1997 6 (CP)

NE Aegean Sea April 2000 C. typicus (7–49) 36 (CP) Zervoudaki et al. (2007)
C. helgolandicus (3–24)
A. clausi (1–25)
P. parvus (9–25)
O. similis (0.3–9)
A. clausi (1–25)

Sept 1999 T. stylifera (1–128) 15 (CP)
C. furcatus (2–15)
P. parvus (3–8)
O. media (3–7)
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Fig. 1. Major seas, connecting straits and bottom topography of Mediterranean Sea.
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Fig. 2. Key traits of surface circulation of Mediterranean Sea. Acronyms: AE - Algerian Eddies; AF -
Almerian Front; CE - Cyprus Eddy; WCE - West Cyprus Eddy; NCF Catalan Front; IG Ierapetra Gyre;
MMG Mersa Matruh Gyre; NBF North Balearic Front; NEAF - North East Aegean Front; NTC North
Tyrrhenian Antiyclon; NTA North Tyrrhenian Cyclon; PG Pelops Gyre; RG Rhodos Gyre; SAG South
Adriatic Gyre; SG - Shikmona Gyre (sources: Artegiani et al., 1997; Astraldi et al., 2002; Karageorgis
et al., 2008; Malanotte-Rizzoli et al., 1997; Millot, 1999; Rinaldi et al., 2009)
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Fig. 2. Key traits of surface circulation of Mediterranean Sea. Acronyms: AE: Algerian Ed-
dies; AF: Almerian Front; CE: Cyprus Eddy; WCE: West Cyprus Eddy; NCF: Catalan Front;
IG: Ierapetra Gyre; MMG: Mersa Matruh Gyre; NBF: North Balearic Front; NEAF: North East
Aegean Front; NTC: North Tyrrhenian Antiyclon; NTA: North Tyrrhenian Cyclon; PG: Pelops
Gyre; RG: Rhodos Gyre; SAG: South Adriatic Gyre; SG: Shikmona Gyre (sources: Artegiani
et al., 1997; Astraldi et al., 2002; Karageorgis et al., 2008; Malanotte-Rizzoli et al., 1997; Millot,
1999; Rinaldi et al., 2009).
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mission of American Geophysical Union.
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Fig. 4. Average nitrate concentration (µmol l−1) at 10 m (upper panel) and 125 m (lower panel)
in winter.
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Fig. 5. Spatial distribution of satellite derived chl-a as reported by D’Ortenzio and Rib-
era d’Alcalá (2009).
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Fig. 6. Spatial distribution of the seven bioprovinces derived from the analysis of the SeaWiFS
chl-a dataset (D’Ortenzio and Ribera d’Alcalá, 2009).
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Fig. 7. The top panel shows the deepening of the DCM (Z Chl Max) and the chl-a dispersion
(Chl Dispersion) as an average of the discrete depth difference from water column average
of chl-a concentration, in percentage. Dispersion values in the western basin are closer to
100% than in the Eastern Basin, demonstrating a higher vertical patchiness in the latter. The
bottom panel represents the west to east decrease for calculated chl-a in pico-, nano- and
microplankton. Note the Longitude scale: the two data points to the left are outside the MS,
while the Levantine basin was not sampled. Modified with permission from Dolan et al. (2002).
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Fig. 8. Integrated primary production (mg C m−2 day−1) during the MINOS cruise (May-June
1996), reproduced with permission from Moutin and Raimbault (2002).
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Fig. 9. Longitudinal differences in the distribution of selected autotrophic picoeukaryotes dur-
ing the cruise PROSOPE from Gibraltar to the Southern Cretan Sea in September 1999. The
distribution of the different taxa is represented as their percentage to the total eukaryotes es-
timated with quantitative PCR. Chlorophytes were abundant in deep and intermediate layers
in the western basin, whereas Ostreococcus, Bathycoccus and other Mamiellales were only
abundant at intermediate depths in the Sicily Channel, reproduced with permission from Marie
et al. (2006).
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Fig. 10. Seasonal cycle of phytoplankton at the long-term station DYFAMED for the 1991–
1999 period. Nanoflagellates (HF+BF), diatoms (Fuco) and Prochlorococcus (DVChla) are
represented as ratio of their distinctive pigments to total chl-a. The total chl-a integrated con-
centration (mg m−2) is also represented in green, reproduced with permission from Marty et
al. (2002).
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Fig. 11. Vertical profiles of diatoms, dinoflagellates and coccolitophores over an eastwest
longitudinal transect of the Mediterranean Sea in June 1999, modified with permission from
Ignatiades et al. (2009). 11285
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Fig. 12. Average surface viral and bacterial abundance from the different Mediterranean sites
(A), average integrated values (1–200 m), that were normalized in each case dividing them by
the maximal considered depth (B). Bars are SD of the mean. NWM: NW-Mediterranean, ALB:
Alboran, WM: WMediterranean, THY: Tyrrhenian, SICH: Straits of Sicily, ADR: Adriatic, ION:
Ionian (B).
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Fig. 13. Relationship between bacterial and viral abundance (log transformed), taken at depths
between 5 and 200 m, for Western and Eastern Mediterranean waters.
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Fig. 14. (A) Log–log linear regression between bacterial biomass (µgCl−1) and bacterial pro-
duction (µgCl−1h−1) and (B) between bacterial production (µgCl−1h−1) and primary production
for the West and East Mediterranean Sea waters; (C) Relationship between log heterotrophic
nanoflagellates abundance (HNF, cellsml−1) and log bacterial prey (cellsml−1) from the model of
(Gasol, 1994). All HNF abundances fall below the Maximum Attainable Abundance line (MAA)
while 70 and 75% HNF fall above the Mean Realised Abundance for marine environment (MRA)
in the East and the West Mediterranean, respectively, generally suggesting bottom-up control
prevailing on HNF (cf. open sea studies on Table 3).
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Fig. 15. Log–log linear regression between chl-a concentration (µgl−1) and ciliate abundance
(celll−1), taken at depths between 5 and 200 m, for Western and Eastern Mediterranean waters.
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Fig. 16. Spatial distribution of total mesozooplankton abundance (black circles) or total
copepod abundance (open circles) (1000×ind. m−2) in spring time in the 0–200 layer of MS.
(Sources: Benović et al., 2005; Christou et al., 1998; Fernàndez de Puelles et al., 2004 (0–
100 m layer); Gaudy and Champalbert, 1998; Mazzocchi et al., 2003; Mazzocchi, unpublished
data; Pasternak et al., 2005 (0–150 m layer); Pinca and Dallot, 1995; Porumb and Onciu, 2006;
Saiz et al., 1999; Scotto di Carlo et al., 1984; Seguin et al., 1994; Siokou-Frangou, unpublished
data; Zakaria, 2006) (0–100 m layer).
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Fig. 17. Distribution of total mesozooplankton abundance (1000×ind.m2) in the 0–100 m layer
during June 1999 (black circles), (Source: Siokou-Frangou et al., 2004) and of total cope-
pods abundance (1000×ind.m2) in the 0–200 m layer during September 1999 (white circles),
(Source: Dolan et al., 2002).
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Fig. 18. Distribution of mesozooplankton biomass (dry weight in mgm−3) in the 0–200 m layer
of the Almeria-Oran area, as affected by the hydrological features. Modified with permission
from Youssara and Gaudy, 2001).
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Fig. 19. Rank order of dominant copepod species or genera in the 0–200 m layer of several
areas of the MS in spring. The rank order of each species or genus is given in the y axis and the
height of the relevant pattern decreases with the rank order of the species. ALB: Almeria-Oran
area, MCH: Mallorca Channel, NBA: North Balearic Sea, GLI: gulf of Lion; LIG: Ligurian Sea,
ADR: Adriatic Sea, ION: Ionian Sea, NAG: North Aegean Sea, SAG: South Aegean Sea; RHO:
Rhodos cyclonic gyre; LEV: Central Levantine Sea (Sources: Fernàndez de Puelles et al., 2004
(0–100 m layer); Gaudy et al., 2003; Hure et al., 1980; Mazzocchi et al., 2003 and unpublished;
Pasternak et al., 2005 (0–150 m layer); Pancucci-Papadopoulou et al., 1992; Pinca and Dallot,
1995; Seguin et al., 1994; Siokou-Frangou et al., 2004 and unpublished).
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